Pass implicit Ordering[Int] argument to Ordering[T] parameter - scala

I want to write some mergesort function.
How to supply Ordering[T] to merge subfunction?
The overall structure of application is the following:
object Main extends App {
...
val array: Array[Int] = string.split(' ').map(_.toInt)
def mergesort[T](seq: IndexedSeq[T]): IndexedSeq[T] = {
def mergesortWithIndexes(seq: IndexedSeq[T],
startIdx: Int, endIdx: Int): IndexedSeq[T] = {
import Helpers.append
val seqLength = endIdx - startIdx
val splitLength = seq.length / 2
val (xs, ys) = seq.splitAt(splitLength)
val sortXs = mergesortWithIndexes(xs, startIdx, startIdx + seqLength)
val sortYs = mergesortWithIndexes(ys, startIdx + seqLength, endIdx)
def merge(sortXs: IndexedSeq[T], sortYs: IndexedSeq[T],
writeFun: Iterable[CharSequence] => Path)(ord: math.Ordering[T]): IndexedSeq[T] = {
...
while (firstIndex < firstLength || secondIndex < secondLength) {
if (firstIndex == firstLength)
buffer ++ sortYs
else if (secondIndex == secondLength)
buffer ++ sortXs
else {
if (ord.lteq(minFirst, minSecond)) {
...
} else {
...
}
}
}
buffer.toIndexedSeq
}
merge(sortXs, sortYs, append(output))
}
mergesortWithIndexes(seq, 0, seq.length)
}
val outSeq = mergesort(array)
Helpers.write(output)(Vector(outSeq.mkString(" ")))
}
I want to have general merge() function definition, but in application I use IndexedSeq[Int] and thus expecting pass predefined Ordering[Int].

Adding implicit Ordering[T] parameter to the outermost function should fix the problem, and passing non Ordering[T] arguments will result in compile error.
Scala's sort functions do the same thing: https://github.com/scala/scala/blob/2.12.x/src/library/scala/collection/SeqLike.scala#L635
def mergesort[T](seq: IndexedSeq[T])(implicit ord: math.Ordering[T]): IndexedSeq[T] = {

Related

Scala Lazy Dynamic Programming

So I'm following http://jelv.is/blog/Lazy-Dynamic-Programming/ and implementing the Fibonacci example in Scala. Here is my implementation:
class Lazy[T] (expr : => T) {
lazy val value = expr
def apply(): T = value
}
object Lazy{ def apply[T](expr : => T) = new Lazy({expr}) }
def fib(n: Int): Int = {
def doFib(i: Int): Lazy[Int] = Lazy {
if (i <= 2) 1
else fibs(i - 1)() + fibs(i - 2)()
}
lazy val fibs = Array.tabulate[Lazy[Int]](n)(doFib)
doFib(n).value
}
fib(5)
In this case, fib(5) correctly returns result 5.
Then I want to see if Lazy[T] can be made into a monad by trying the following code, which results in StackOverflow runtime error:
class Lazy[T] (expr : => T) {
lazy val value = expr
def apply(): T = value
def flatMap[A](f: T => Lazy[A]): Lazy[A] = Lazy { f(value).value }
def map[A](f: T => A): Lazy[A] = Lazy { f(value) }
}
object Lazy{ def apply[T](expr : => T) = new Lazy({expr}) }
def fib(n: Int): Int = {
def doFib(i: Int): Lazy[Int] =
if (i <= 2) Lazy(1)
else for {
a <- fibs(i - 1)
b <- fibs(i - 2)
} yield a + b
lazy val fibs = Array.tabulate[Lazy[Int]](n)(doFib)
doFib(n).value
}
fib(5)
It appears that fibs(i - 1) is calculated too early, which results in infinite recursion. I wonder if there is a for comprehension syntax that's equivalent to the first code snippet?
You are right, "fibs(i - 1) is calculated too early". It is evaluated immediately when you call doFib, because the doFib(i) needs fibs(i - 1) in order to be able to return anything, which in turn needs the return value of doFib(i - 1) and so on, so that the recursion unfolds completely while you are constructing the array of lazy ints (before you invoke doFib(n).value).
If you want it lazy, then return a Lazy that does not require immediate evaluation of fibs(i - 1):
class Lazy[T] (expr : => T) {
lazy val value = expr
def apply(): T = value
def flatMap[A](f: T => Lazy[A]): Lazy[A] = Lazy { f(value).value }
def map[A](f: T => A): Lazy[A] = Lazy { f(value) }
}
object Lazy{ def apply[T](expr : => T) = new Lazy({expr}) }
def fib(n: Int): Int = {
def doFib(i: Int): Lazy[Int] =
if (i <= 2) Lazy(1)
else Lazy{ (for {
a <- fibs(i - 1)
b <- fibs(i - 2)
} yield a + b).value
}
lazy val fibs = Array.tabulate[Lazy[Int]](n)(doFib)
doFib(n).value
}
println(fib(40)) // 102334155
Alternatively, you can wrap the whole if-else in a Lazy:
def doFib(i: Int): Lazy[Int] = Lazy {
if (i <= 2) 1
else (for {
a <- fibs(i - 1)
b <- fibs(i - 2)
} yield a + b).value
}
This produces the same expected result.

Scala higher order function compiler error

I am learning Scala apply and higher order function. I have this coding, but why compiler gave me an error: "missing parameter type", how to fix it ?
import scala.collection.mutable.ListBuffer
object MyArr {
var mList1 = ListBuffer[Int]()
def filter(p: Int => Boolean): List[Int] = {
val mList = List[Int]()
for (x <- mList1) {
if (p(x)) x :: mList
}
mList
}
def apply(x: Array[Int]) = {
for (y <- x) mList1 += y
}
}
def isEven(x: Int): Boolean = {
x % 2 == 0
}
var mCustomArr = MyArr(Array(1, 2, 3, 4))
mCustomArr.filter(x => isEven(x)).foreach(println)
if apply method just takes a single parameter and add it to mList1 , it will work. why ?
thanks
If you had added the return type to the apply() definition the compiler would have pointed out exactly where the error is.
def apply(x: Array[Int]): ListBuffer[Int] = {
for (y <- x) mList1 += y
mList1
}
In the apply method, it updates mList1 in Object and return Unit. So variable mCustomArr will be Unit type.
If you want to use filter method, you need to use MyArr Object like MyArr.filter(x => isEven(x)).foreach(println).
But when I look into your implementation of filter method, it looks like mList inside method never changed. I think the filter method could be implemented like
object MyArr {
var mList1 = ListBuffer[Int]()
def filter(p: Int => Boolean): ListBuffer[Int] = {
val mList = ListBuffer[Int]()
for (x <- mList1) {
if (p(x)) mList += x
}
mList
}
def apply(x: Array[Int]) = {
for (y <- x) mList1 += y
}
}
Hope you happy to learn Scala, Cheers.

What's point in receiving a `PrefixMap` and returning a empty `PrefixMap`?

Here is an example from the stairway book:
object Example1 {
import collection._
class PrefixMap[T]
extends mutable.Map[String, T]
with mutable.MapLike[String, T, PrefixMap[T]] {
var suffixes: immutable.Map[Char, PrefixMap[T]] = Map.empty
var value: Option[T] = None
def get(s: String): Option[T] = {
// base case, you are at the root
if (s.isEmpty) value
// recursive
else suffixes get (s(0)) flatMap (_.get(s substring 1))
}
def iterator: Iterator[(String, T)] = {
(for (v <- value.iterator) yield ("", v)) ++
(for ((chr, m) <- suffixes.iterator; (s, v) <- m.iterator) yield (chr +: s, v))
}
def +=(kv: (String, T)): this.type = {
update(kv._1, kv._2)
this
}
def -=(key: String): this.type = {
remove(key)
this
}
def withPrefix(s: String): PrefixMap[T] = {
if (s.isEmpty) this
else {
val leading = s(0)
suffixes get leading match {
case None => {
// key does not exist, create it
suffixes = suffixes + (leading -> empty)
}
case _ =>
}
// recursion
suffixes(leading) withPrefix (s substring 1)
}
}
override def update(s: String, elem: T) = {
withPrefix(s).value = Some(elem)
}
override def remove(key: String): Option[T] = {
if (key.isEmpty) {
// base case. you are at the root
val prev = value
value = None
prev
} else {
// recursive
suffixes get key(0) flatMap (_.remove(key substring 1))
}
}
override def empty = PrefixMap.empty
}
import collection.mutable.{Builder, MapBuilder}
import collection.generic.CanBuildFrom
object PrefixMap {
def empty[T] = new PrefixMap[T]
def apply[T](kvs: (String, T)*): PrefixMap[T] = {
val m: PrefixMap[T] = empty
for(kv <- kvs) m += kv
m
}
def newBuilder[T]: Builder[(String, T), PrefixMap[T]] = {
new mutable.MapBuilder[String, T, PrefixMap[T]](empty)
}
implicit def canBuildFrom[T]: CanBuildFrom[PrefixMap[_], (String, T), PrefixMap[T]] = {
new CanBuildFrom[PrefixMap[_], (String, T), PrefixMap[T]] {
def apply(from: PrefixMap[_]) = newBuilder[T]
def apply() = newBuilder[T]
}
}
}
}
I don't understand this line:
def apply(from: PrefixMap[_]) = newBuilder[T]
What's point in receiving a PrefixMap and returning a empty PrefixMap?
Read little bit more official docs
If in short: CBF can return builder with knowledge of properties of whole collection.
For example it could preinitialize some buffer of needed size to collect entries.
Or even reuse some parts of collection of known type and structure.
But by default in many case it would just collect element by element to empty collection. That's happening in your case.

scala trait members and derivated variables

Hi am trying to write a simple hill climbing algorithm in scala .
I have State and HillClimbing that are traits.
I define them as concrete classes when I apply them to the Graph problem.
In GraphHillClimbing I receive two errors. This is because I use GraphState instead of State (observe that GraphState is also a State).
How can I solve this?
trait State {
val loc = 0
def neighbours: List[State]
def get_loc():Int = return loc
}
class GraphState(loc:Int, g: Map[Int, List[Int]]) extends State {
def neighbours():List[GraphState] =
{
def neighboursAcc(l:List[Int], acc:List[GraphState], g:Map[Int, List[Int]]):List[GraphState] =
{
if(l.isEmpty) acc
else {
val new_neig = new GraphState(l.head, g)
neighboursAcc(l.tail, List(new_neig) ++ acc, g)
}
}
neighboursAcc(g(loc), List(), g)
}
}
trait HillClimbing {
val max_iteration = 4
val start:State
def cost(state:State):Double
private def argmin(costs:List[Double]):Int = {
val best = costs.min
costs.indexOf(best)
}
private def next_best(states:List[State]):State = {
val costs = states map(x => cost(x))
val pos = argmin(costs)
states(pos)
}
def minimize():State = {
def minimizeAcc(iteration:Int, state:State):State =
{
if(iteration > max_iteration) state
else {
val neigs = state.neighbours
val next_state = next_best(neigs)
minimizeAcc(iteration+1, next_state)
}
}
minimizeAcc(0, start)
}
}
class GraphHillClimbing(start:GraphState, goal:GraphState) extends HillClimbing {
// ERROR 1 = start was State and now it is GraphState
// ERROR 2 = cost should take a State
def cost(current_state:GraphState):Double = {
val distance = goal.get_loc() - current_state.get_loc()
if(distance > 0 ) distance
else -distance
}
}
object RunHillClimbing {
def main(args: Array[String]) {
val G = Map[Int, List[Int]](1->List(2, 4, 5), 2->List(1, 3, 4), 3->List(2, 6), 4->List(1, 2, 5), 5->List(1, 4), 6->List(3))
val start = new GraphState(1, G)
val goal = new GraphState(6, G)
val hc = new GraphHillClimbing(start, goal)
print(hc.minimize())
}
}
I think this can be solved using some type parameters with type bounds.
Also in your constructor for GraphHillClimbing you should use val to indicate that the parameter start is the concrete implementation of the abstract start.
trait State[+Self] {
Self =>
def loc:Int
def neighbours: List[Self]
def get_loc():Int = return loc
}
class GraphState(val loc:Int, g: Map[Int, List[Int]]) extends State[GraphState] {
def neighbours():List[GraphState] =
{
def neighboursAcc(l:List[Int], acc:List[GraphState], g:Map[Int, List[Int]]):List[GraphState] =
{
if(l.isEmpty) acc
else {
val new_neig = new GraphState(l.head, g)
neighboursAcc(l.tail, List(new_neig) ++ acc, g)
}
}
neighboursAcc(g(loc), List(), g)
}
}
trait HillClimbing[T<:State[T]] {
val max_iteration = 4
val start:T
def cost(state:T):Double
private def argmin(costs:List[Double]):Int = {
val best = costs.min
costs.indexOf(best)
}
private def next_best(states:List[T]):T = {
val costs = states map(x => cost(x))
val pos = argmin(costs)
states(pos)
}
def minimize():T = {
def minimizeAcc(iteration:Int, state:T):T =
{
if(iteration > max_iteration) state
else {
val neigs = state.neighbours
val next_state = next_best(neigs)
minimizeAcc(iteration+1, next_state)
}
}
minimizeAcc(0, start)
}
}
class GraphHillClimbing(val start:GraphState, goal:GraphState) extends HillClimbing[GraphState] {
def cost(current_state:GraphState):Double = {
val distance = goal.get_loc() - current_state.get_loc()
if(distance > 0 ) distance
else -distance
}
}
object RunHillClimbing {
def main(args: Array[String]) {
val G = Map[Int, List[Int]](1->List(2, 4, 5), 2->List(1, 3, 4), 3->List(2, 6), 4->List(1, 2, 5), 5->List(1, 4), 6->List(3))
val start = new GraphState(1, G)
val goal = new GraphState(6, G)
val hc = new GraphHillClimbing(start, goal)
print(hc.minimize())
}
}
What I get:
error: class GraphHillClimbing needs to be abstract, since:
it has 2 unimplemented members.
/** As seen from class GraphHillClimbing, the missing signatures are as follows.
* For convenience, these are usable as stub implementations.
*/
def cost(state: this.State): Double = ???
val start: this.State = ???
class GraphHillClimbing(start:GraphState, goal:GraphState) extends HillClimbing {
^
Replace GraphState in the class with State, because inheritance
demands you'll have to handle State not GraphState.
Then replace
val loc = 0
with
def loc = 0
So you can overwrite it in GraphState.

scala: adding a method to List?

I was wondering how to go about adding a 'partitionCount' method to Lists, e.g.:
(not tested, shamelessly based on List.scala):
Do I have to create my own sub-class and an implicit type converter?
(My original attempt had a lot of problems, so here is one based on #Easy's answer):
class MyRichList[A](targetList: List[A]) {
def partitionCount(p: A => Boolean): (Int, Int) = {
var btrue = 0
var bfalse = 0
var these = targetList
while (!these.isEmpty) {
if (p(these.head)) { btrue += 1 } else { bfalse += 1 }
these = these.tail
}
(btrue, bfalse)
}
}
and here is a little more general version that's good for Seq[...]:
implicit def seqToRichSeq[T](s: Seq[T]) = new MyRichSeq(s)
class MyRichList[A](targetList: List[A]) {
def partitionCount(p: A => Boolean): (Int, Int) = {
var btrue = 0
var bfalse = 0
var these = targetList
while (!these.isEmpty) {
if (p(these.head)) { btrue += 1 } else { bfalse += 1 }
these = these.tail
}
(btrue, bfalse)
}
}
You can use implicit conversion like this:
implicit def listToMyRichList[T](l: List[T]) = new MyRichList(l)
class MyRichList[T](targetList: List[T]) {
def partitionCount(p: T => Boolean): (Int, Int) = ...
}
and instead of this you need to use targetList. You don't need to extend List. In this example I create simple wrapper MyRichList that would be used implicitly.
You can generalize wrapper further, by defining it for Traversable, so that it will work for may other collection types and not only for Lists:
implicit def listToMyRichTraversable[T](l: Traversable[T]) = new MyRichTraversable(l)
class MyRichTraversable[T](target: Traversable[T]) {
def partitionCount(p: T => Boolean): (Int, Int) = ...
}
Also note, that implicit conversion would be used only if it's in scope. This means, that you need to import it (unless you are using it in the same scope where you have defined it).
As already pointed out by Easy Angel, use implicit conversion:
implicit def listTorichList[A](input: List[A]) = new RichList(input)
class RichList[A](val source: List[A]) {
def partitionCount(p: A => Boolean): (Int, Int) = {
val partitions = source partition(p)
(partitions._1.size, partitions._2.size)
}
}
Also note that you can easily define partitionCount in terms of partinion. Then you can simply use:
val list = List(1, 2, 3, 5, 7, 11)
val (odd, even) = list partitionCount {_ % 2 != 0}
If you are curious how it works, just remove implicit keyword and call the list2richList conversion explicitly (this is what the compiler does transparently for you when implicit is used).
val (odd, even) = list2richList(list) partitionCount {_ % 2 != 0}
Easy Angel is right, but the method seems pretty useless. You have already count in order to get the number of "positives", and of course the number of "negatives" is size minus count.
However, to contribute something positive, here a more functional version of your original method:
def partitionCount[A](iter: Traversable[A], p: A => Boolean): (Int, Int) =
iter.foldLeft ((0,0)) { ((x,y), a) => if (p(a)) (x + 1,y) else (x, y + 1)}