Unsupervised training of sparse autoencoders in matlab - matlab

I've tried to follow the example provided at mathworks for training a deep sparse autoencoder (4 layers), so i pre-trained the autoencoders separately and then stacked then into a deep network. When i try to finetune this network though, via the
train(deepnet, InputDataset)
instruction, the training stops instantly and i receive a "performance goals met" message.
Is there a way to train and finetune a deep autoencoder network in an unsupervised manner in Matlab (no labels provided)?

Have you set the "MSE" goal? Secondly, for fine tuning of network use a conventional back-propagation algorithm in supervised fashion.

Related

Supervised Neural Networks

I am reading a lot of articles about neural networks and I found very different information. I understand that the supervised neural network can be also regression and classification. In both cases I can use the sigmoid function but what is the difference?
A single-layer neural network is essentially the same thing as linear regression. That's because of how neural networks work: Each input gets weighted with a weight factor to produce an output, and the weight factors are iteratively chosen in such a way that the error (the discrepancy between the outputs produced by the model and the correct output that should be produced for a given input) is minimised. Linear regression does the same thing. But in a neural network, you can stack several of such layers on top of each other.
Classification is a potential, but by far not the only, use case for neural networks. Conversely, there are classification algorithms that don't use neural networks (e.g. K-nearest neighbours). The sigmoid function is often used as an activation function for the last layer in a classifier neural network.

Is it possible to extend trained Neural Network to recognize additional patterns

Lets say I have Neural Network (NN) that is trained to recognize cats given an image, is there a way to update my NN to recognize dogs as well?
More generally, my question is regarding a way to extend a NN by kind a "loading patterns library".
This is generally known as transfer learning, you basically train a neural network on a large dataset (like ImageNet) and then use the feature vector that is generated by the final convolutional layer to train another classifier (a multiclass SVM for example), and this works even if the objects are different.
Another way is to take a pretrained network and retrain the classifier part (the fully connected layers). It is still faster than training a network from scratch.

Applying Neural Network to forecast prices

I have read this line about neural networks :
"Although the perceptron rule finds a successful weight vector when
the training examples are linearly separable, it can fail to converge
if the examples are not linearly separable.
My data distribution is like this :The features are production of rubber ,consumption of rubber , production of synthetic rubber and exchange rate all values are scaled
My question is that the data is not linearly separable so should i apply ANN on it or not? is this a rule that it should be applied on linerly separable data only ? as i am getting good results using it (0.09% MAPE error) . I have also applied SVM regression (fitrsvm function in MATLAB)so I have to ask can SVM be used in forecasting /prediction or it is used only for classification I haven't read anywhere about using SVM to forecast , and the results for SVM are also not good what can be the possible reason?
Neural networks are not perceptrons. Perceptron is on of the oldest ideas, which is at most a single building block of neural networks. Perceptron is designed for binary, linear classification and your problem is neither the binary classification nor linearly separable. You are looking at regression here, where neural networks are a good fit.
can SVM be used in forecasting /prediction or it is used only for classification I haven't read anywhere about using SVM to forecast , and the results for SVM are also not good what can be the possible reason?
SVM has regression "clone" called SVR which can be used for any task NN (as a regressor) can be used. There are of course some typical characteristics of both (like SVR being non parametric estimator etc.). For the task at hand - both approaches (as well as any another regressor, there are dozens of them!) is fine.

Parameter settings for neural networks based classification using Matlab

Recently, I am trying to using Matlab build-in neural networks toolbox to accomplish my classification problem. However, I have some questions about the parameter settings.
a. The number of neurons in the hidden layer:
The example on this page Matlab neural networks classification example shows a two-layer (i.e. one-hidden-layer and one-output-layer) feed forward neural networks. In this example, it uses 10 neurons in the hidden layer
net = patternnet(10);
My first question is how to define the best number of neurons for my classification problem? Should I use cross-validation method to get the best performed number of neurons using a training data set?
b. Is there a method to choose three-layer or more multi-layer neural networks?
c. There are many different training method we can use in the neural networks toolbox. A list can be found at Training methods list. The page mentioned that the fastest training function is generally 'trainlm'; however, generally speaking, which one will perform best? Or it totally depends on the data set I am using?
d. In each training method, there is a parameter called 'epochs', which is the training iteration for my understanding. For each training method, Matlab defined the maximum number of epochs to train. However, from the example, it seems like 'epochs' is another parameter we can tune. Am I right? Or we just set the maximum number of epochs or leave it as default?
Any experience with Matlab neural networks toolbox is welcome and thanks very much for your reply. A.
a. You can refer to How to choose number of hidden layers and nodes in neural network? and ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hu
Surely you can do cross-validation to determine the parameter of best number of neurons. But it's not recommended as it's more suitable to use it in the stage of weights training of a certain network.
b. Refer to ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hl
And for more layers of neural network, you can refer to Deep Learning, which is very hot in recent years and gets state-of-the-art performances in many of the pattern recognition tasks.
c. It depends on your data. trainlm performs better on function fitting (nonlinear regression) problems than on pattern recognition problems while training large networks and pattern recognition networks, trainscg and trainrp are good choices. Generally, Gradient Descent and Resilient Backpropagation is recommended. More detailed comparison can be found here: http://www.mathworks.cn/cn/help/nnet/ug/choose-a-multilayer-neural-network-training-function.html
d. Yes, you're right. We can tune the epochs parameter. Generally you can output the recognition results/accuracy at every epoch and you will see that it is promoting more and more slowly, and the more epochs the more computing time. You can make a compromise between the accuracy and computation time.
For part b of your question:
You can use like this code:
net = patternnet([10 15 20]);
This script create a network with 3 hidden layer that first layer has 10 neurons, second layer has 15 neurons and 3th layer has 20 neurons.

What's the difference between convolutional and recurrent neural networks? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I'm new to the topic of neural networks. I came across the two terms convolutional neural network and recurrent neural network.
I'm wondering if these two terms are referring to the same thing, or, if not, what would be the difference between them?
Difference between CNN and RNN are as follows:
CNN:
CNN takes a fixed size inputs and generates fixed-size outputs.
CNN is a type of feed-forward artificial neural network - are variations of multilayer perceptrons which are designed to use minimal amounts of preprocessing.
CNNs use connectivity pattern between its neurons and is inspired by the organization of the animal visual cortex, whose individual neurons are arranged in such a way that they respond to overlapping regions tiling the visual field.
CNNs are ideal for images and video processing.
RNN:
RNN can handle arbitrary input/output lengths.
RNN unlike feedforward neural networks - can use their internal memory to process arbitrary sequences of inputs.
Recurrent neural networks use time-series information. i.e. what I spoke last will impact what I will speak next.
RNNs are ideal for text and speech analysis.
Convolutional neural networks (CNN) are designed to recognize images. It has convolutions inside, which see the edges of an object recognized on the image. Recurrent neural networks (RNN) are designed to recognize sequences, for example, a speech signal or a text. The recurrent network has cycles inside that implies the presence of short memory in the net. We have applied CNN as well as RNN choosing an appropriate machine learning algorithm to classify EEG signals for BCI: http://rnd.azoft.com/classification-eeg-signals-brain-computer-interface/
These architectures are completely different, so it is rather hard to say "what is the difference", as the only thing in common is the fact, that they are both neural networks.
Convolutional networks are networks with overlapping "reception fields" performing convolution tasks.
Recurrent networks are networks with recurrent connections (going in the opposite direction of the "normal" signal flow) which form cycles in the network's topology.
Apart from others, in CNN we generally use a 2d squared sliding window along an axis and convolute (with original input 2d image) to identify patterns.
In RNN we use previously calculated memory. If you are interested you can see, LSTM (Long Short-Term Memory) which is a special kind of RNN.
Both CNN and RNN have one point in common, as they detect patterns and sequences, that is you can't shuffle your single input data bits.
Convolutional neural networks (CNNs) for computer vision, and recurrent neural networks (RNNs) for natural language processing.
Although this can be applied in other areas, RNNs have the advantage of networks that can have signals travelling in both directions by introducing loops in the network.
Feedback networks are powerful and can get extremely complicated. Computations derived from the previous input are fed back into the network, which gives them a kind of memory. Feedback networks are dynamic: their state is changing continuously until they reach an equilibrium point.
First, we need to know that recursive NN is different from recurrent NN.
By wiki's definition,
A recursive neural network (RNN) is a kind of deep neural network created by applying the same set of weights recursively over a structure
In this sense, CNN is a type of Recursive NN.
On the other hand, recurrent NN is a type of recursive NN based on time difference.
Therefore, in my opinion, CNN and recurrent NN are different but both are derived from recursive NN.
This is the difference between CNN and RNN
Convolutional Neural NEtwork:
In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery. ... They have applications in image and video recognition, recommender systems, image classification, medical image analysis, and natural language processing.
Recurrent Neural Networks:
A recurrent neural network (RNN) is a class of artificial neural networks where connections between nodes form a directed graph along a temporal sequence. This allows it to exhibit temporal dynamic behavior. Unlike feedforward neural networks, RNNs can use their internal state (memory) to process sequences of inputs.
It is more helpful to describe the convolution and recurrent layers first.
Convolution layer:
Includes input, one or more filters (as well as subsampling).
The input can be one-dimensional or n-dimensional (n>1), for example, it can be a two-dimensional image. One or more filters are also defined in each layer. Inputs are convolving with each filter. The method of convolution is almost similar to the convolution of filters in image processing. In general, the purpose of this section is to extract the features of each filter from the input. The output of each convolution is called a feature map.
For example, a filter is considered for horizontal edges, and the result of its convolution with the input is the extraction of the horizontal edges of the input image. Usually, in practice and especially in the first layers, a large number of filters (for example, 60 filters in one layer) are defined. Also, after convolution, the subsampling operation is usually performed, for example, their maximum or average of each of the two neighborhood values ​​is selected.
The convolution layer allows important features and patterns to be extracted from the input. And delete input data dependencies (linear and nonlinear).
[The following figure shows an example of the use of convolutional layers and pattern extraction for classification.][1]
[1]: https://i.stack.imgur.com/HS4U0.png [Kalhor, A. (2020). Classification and Regression NNs. Lecture.]
Advantages of convolutional layers:
Able to remove correlations and reduce input dimensions
Network generalization is increasing
Network robustness increases against changes because it extracts key features
Very powerful and widely used in supervised learning
...
Recurrent layers:
In these layers, the output of the current layer or the output of the next layers can also be used as the input of the layer. It also can receive time series as input.
The output without using the recurrent layer is as follows (a simple example):
y = f(W * x)
Where x is input, W is weight and f is the activator function.
But in recurrent networks it can be as follows:
y = f(W * x)
y = f(W * y)
y = f(W * y)
... until convergence
This means that in these networks the generated output can be used as an input and thus have memory networks. Some types of recurrent networks are Discrete Hopfield Net and Recurrent Auto-Associative NET, which are simple networks or complex networks such as LSTM.
An example is shown in the image below.
Advantages of Recurrent Layers:
They have memory capability
They can use time series as input.
They can use the generated output for later use.
Very used in machine translation, voice recognition, image description
...
Networks that use convolutional layers are called convolutional networks (CNN). Similarly, networks that use recurrent layers are called recurrent networks. It is also possible to use both layers in a network according to the desired application!