I'm newbie to machine-learning and I was trying to implement binomial family of GeneralizedLinearRegression model using spark.
I tried this,
val trainingData = sparkSession.read.format("libsvm").load("trainingData.txt")
val testData = sparkSession.read.format("libsvm").load("testData.txt")
val glr = new GeneralizedLinearRegression().setFamily("binomial").setLink("logit").setRegParam(0.3).setMaxIter(10)
val glrModel = glr.fit(trainingData)
model.transform(testData).show()
For my testData, I got my prediction value as 1.0E-16. And when I'm using LogisticRegression, it gives probability(0.765394663) and prediction(0.0) value.
I want to know,
How to predict classes using GeneralizedLinearRegression from prediction value. Should I find classes from prediction value by using a threshold value ?
How to find probability of the predicted value ?
Related
I'm trying to build a simple linear regression model in spark using scala. To test the method I'm trying to perform a single valriable regression using a test data set.
my data set is as follows.
x - integers from 1 to 100
y - random values generated from excel using the formula =RANDBETWEEN(-10,10)*RAND() + x_i
I've run a regression for this data set using python sklearn library and it gives me the best fit line (with r2 = 0.98) for the data as expected.
However, if I run a regression using spark my prediction has a constant value for all the x values in the dataset with an r2 value of 2e-16.
Why doesn't this code give me the best fit line as the prediction? What am I missing?
Here's the code I'm using
Python Code that works
x = np.array(df['x'])
y = np.array(df['x'])
x = x.reshape(-1,1)
y = y.reshape(-1,1)
clf = LinearRegression(normilize=True)
clf.fit(x,y)
y_predictions = clf.predict(x)
print(r2_score(y, y_predictions))
Here's a plot from the python regression.
Scala code that gives a constant prediction
val labelCol = "y"
val assembler = new VectorAssembler()
.setInputCols(Array("x"))
.setOutputCol("features")
val df2 = assembler.transform(df)
val labelIndexer = new StringIndexer().setInputCol(labelCol).setOutputCol("label")
val df3 = labelIndexer.fit(df2).transform(df2)
val regressor = new LinearRegression()
.setMaxIter(10)
.setRegParam(1.0)
.setElasticNetParam(1.0)
val model = regressor.fit(df3)
val predictions = model.transform(df3)
val modelSummary = model.summary
println(s"r2 = ${modelSummary.r2}")
The issue was using the stringIndexer which should not be used on numeric columns. In my case, instead of using the stringIndxer, I should've just renamed the y column to label. This fixes the problem.
I would like to perform KMeans using the Spark ML. Input is a libsvm dataset:
val spark = SparkSession.builder.master("local").appName("my-spark-app").getOrCreate()
// Start time
//val intial_Data=spark.read.option("header",true).csv("C://sample_lda_data.txt")
val dataset = spark.read.format("libsvm").load("C:\\spark\\data\\mllib\\sample_kmeans_data.txt")
// Trains a k-means model.
val kmeans = new KMeans().setK(2).setSeed(1L)
val model = kmeans.fit(dataset)
// Evaluate clustering by computing Within Set Sum of Squared Errors.
val WSSSE = model.computeCost(dataset)
println(s"Within Set Sum of Squared Errors = $WSSSE")
// Shows the result.
println("Cluster Centers: ")
model.clusterCenters.foreach(println)
So i would like to use a csv file and apply KMeans by the Spark ML.
I did this:
val intial_Data=spark.read.option("header",true).csv("C://sample_lda_data.txt")
val arrayCol= array(inputData.columns.drop(1).map(col).map(_.cast(DoubleType)): _*)
import spark.implicits._
// select array column and first column, and map into LabeledPoints
val result = inputData.select(col("col1").cast(DoubleType), arrayCol).map(r => LabeledPoint(r.getAs[Double](0),Vectors.dense(r.getAs[WrappedArray[Double]](1).toArray)))
// Trains a k-means model
val kmeans = new KMeans().setK(2)
val model = kmeans.fit(result)
// Evaluate clustering by computing Within Set Sum of Squared Errors.
val WSSSE = model.computeCost(dataset)
println(s"Within Set Sum of Squared Errors = $WSSSE")
// Shows the result.
println("Cluster Centers: ")
model.clusterCenters.foreach(println)
I tried to turn csv file into a Dataset[LabledPoint].
Is my transformation correct?
In spark 2 instead of MLlib , we are using ML package. Which workon dataset and ML flows work in pipeline model. What u need to do is U have to make a dataset and make two columns feature,label. feature is the a vector of features u need to feed into the algo. The other column label is the target column. To make feature column u just need to use vector assembler to assemble all the features u want to use. If you have a target colunm then rename it as label. after fitting this dataset into algo u will get your model.
Using ml, Spark 2.0 (Python) and a 1.2 million row dataset, I am trying to create a model that predicts purchase tendency with a Random Forest Classifier. However when applying the transformation to the splitted test dataset the prediction is always 0.
The dataset looks like:
[Row(tier_buyer=u'0', N1=u'1', N2=u'0.72', N3=u'35.0', N4=u'65.81', N5=u'30.67', N6=u'0.0'....
tier_buyer is the field used as a label indexer. The rest of the fields contain numeric data.
Steps
1.- Load the parquet file, and fill possible null values:
parquet = spark.read.parquet('path_to_parquet')
parquet.createOrReplaceTempView("parquet")
dfraw = spark.sql("SELECT * FROM parquet").dropDuplicates()
df = dfraw.na.fill(0)
2.- Create features vector:
features = VectorAssembler(
inputCols = ['N1','N2'...],
outputCol = 'features')
3.- Create string indexer:
label_indexer = StringIndexer(inputCol = 'tier_buyer', outputCol = 'label')
4.- Split the train and test datasets:
(train, test) = df.randomSplit([0.7, 0.3])
Resulting train dataset
Resulting Test dataset
5.- Define the classifier:
classifier = RandomForestClassifier(labelCol = 'label', featuresCol = 'features')
6.- Pipeline the stages and fit the train model:
pipeline = Pipeline(stages=[features, label_indexer, classifier])
model = pipeline.fit(train)
7.- Transform the test dataset:
predictions = model.transform(test)
8.- Output the test result, grouped by prediction:
predictions.select("prediction", "label", "features").groupBy("prediction").count().show()
As you can see, the outcome is always 0. I have tried with multiple feature variations in hopes of reducing the noise, also trying from different sources and infering the schema, with no luck and the same results.
Questions
Is the current setup, as described above, correct?
Could the null value filling on the original Dataframe be source of failure to effectively perform the prediction?
In the screenshot shown above it looks like some features are in the form of a tuple and other of a list, why? I'm guessing this could be a possible source of error. (They are representation of Dense and Sparse Vectors)
It seems your features [N1, N2, ...] are strings. You man want to cast all your features as FloatType() or something along those lines. It may be prudent to fillna() after type casting.
Reading the src of https://spark.apache.org/docs/1.5.2/ml-ann.html :
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.Row
// Load training data
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt").toDF()
// Split the data into train and test
val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
val train = splits(0)
val test = splits(1)
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
val layers = Array[Int](4, 5, 4, 3)
// create the trainer and set its parameters
val trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100)
// train the model
val model = trainer.fit(train)
// compute precision on the test set
val result = model.transform(test)
val predictionAndLabels = result.select("prediction", "label")
val evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision")
println("Precision:" + evaluator.evaluate(predictionAndLabels))
Once the model has been trained how can a new training example be classified ?
Can a new training example be added to the model where the label is not set and the classifier will try to classify this training example based on the training data ?
Why is it required that the dataframe labels are of type Double ?
Firstly, the only way to add another observation to the model is by incorporating that data point into the training data, in this case to your train variable. In order to achieve this, you can convert that point into a DataFrame (obviously of only one record) and then use the unionAll method. Nevertheless, you will have to retrain the model using this new dataset.
However, to classify observations using your model you will have to convert your unclassified data into a DataFrame with the same structure that had your training data. And then use the method transform of your model. By the way, notice that models have that method, because they are subclasses of Transformer.
Finally, you have to use Double because that is the way how the LabeledPoint class was defined. It receives a Double as label and a SparseVector or DenseVector as features. I don't know the exact motivation but in my own experience, which isn't wide, all classification and regression algorithms work with float point numbers.Furthermore, gradient descent algorithm, which is widely used to fit most models, uses numbers not letters nor classes to compute the error in each iteration.
I want to define a function in Scala in which I can pass my training and test datasets and then it perform a simple machine learning algorithm and returns some statistics. How should do that? What will be the parameters data type?
Imagine, you need to define a function which by taking training and test datasets performs a simple classification algorithm and then return the accuracy.
What I expect to have is like as follow:
val data = MLUtils.loadLibSVMFile(sc, datadir + "/example.txt");
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L);
val training = splits(0).cache();
val test = splits(1);
val results1 = SVMFunction(training, test)
val results2 = RegressionFunction(training, test)
val results3 = ClassificationFunction(training, test)
I need just the declaration of the functions and not the code that produce the results1, results2, and results3.
def SVMFunction ("I need help here"){
//I know how to work with the training and test datasets to generate the results.
//So no need to discuss what should be here
}
Thanks.
In case you're using supervised learning you should opt for LabeledPoint. Excerpt from mllib doc:
A labeled point is a local vector, either dense or sparse, associated with a label/response. In MLlib, labeled points are used in supervised learning algorithms. We use a double to store a label, so we can use labeled points in both regression and classification. For binary classification, a label should be either 0 (negative) or 1 (positive). For multiclass classification, labels should be class indices starting from zero: 0, 1, 2, ....
And example is:
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
// Create a labeled point with a positive label and a dense feature vector.
val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0))
// Create a labeled point with a negative label and a sparse feature vector.
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))