Matlab vpasolve returns empty syms variables - matlab

I'm having some trouble solving this. Matlab always returns a empties syms variables (H, d, k and L), but I know there is a solution because I've already solve it with another program. I need to solve this one at matlab though. Some idea of what I can change?
Thanks!
clear all
syms H d k L
%parameters values
ro = 1020; % kg/m^3 - seawater
g = 9.81; % m/s^2
T = 10; % s
z = d;
s = 0; % =d+z, with z=-d;
teta = 0;
%equations definitions
omega = sqrt(k*g*tanh(k*d));
pressureStokes = -ro*g*z + 0.5*ro*g*H*cosh(k*s)/cosh(k*d)*cos(teta) + 3/4*ro*g*H*pi*H/L/sinh(2*k*d)*(cosh(2*k*s)/sinh(k*d)^2-1/3)*cos(2*teta) - 1/4*ro*g*H*pi*H/L/sinh(2*k*d)*(cosh(2*k*s)-1);
%equations to solve
eq1 = omega == 2*pi/T;
eq2 = k == 2*pi/L;
eq3 = pressureStokes == 86.7e3;
eq4 = pressureStokes == 124.4e3;
[H,d,k,L] = vpasolve([eq1,eq2,eq3,eq4],[H d k L],[5 10 0.07 90]);

The system contains the equations pressureStokes == 86.7e3; and pressureStokes == 124.4e3; that can not be satisfied at the same time

Related

ODE SYSTEM OF EQUATION

I'm trying to solve a system of ode's using Runge-kutta, i made a function for RK2(f,h,x0,y0,xfinal) and tried to solve the system shown below with specified IC's. Could someone help fix the code as I get errors and code doesn't work.
ode set
beta = 1/3;
gamma = 1/7;
syms R S I % Symbolic Math Toolbox
N = S+I+R;
ode1 = -(beta*I*S)/N;
ode2 = -(beta*I*S)/N-gamma*I;
ode3 = gamma*I;
odes = [ode1,ode2,ode3];
for j = odes
RK2(j,0.2,0,8e6,7);
end
function [xs,ys] = RK2(f,h,x0,y0,xfinal)
ffnc = matlabFunction(f);
fprintf('\n x y ');
o = 1;
while x0 <= xfinal
fprintf('\n%4.3f %4.3f ',x0,y0); %values of x and y
xs(o) = x0;
ys(o) = y0;
k1 = h*ffnc (x0,y0);
x1 = x0+h;
k2 = h*ffnc (x1,y0+k1);
y1 = y0+(k1+k2)/2;
x0 = x1;
y0 = y1;
o = o+1;
end
end

How to solve a system of three first-order ODEs in Matlab

I am using Matlab to try and solve a system of three first-order ODEs, but the error message I get is 'syms' requires Symbolic Math Toolbox.
Error in spiders (line 1)
syms f(t) s(t) v(t) r W c h q a k b H K e
On a previous occasion, I received an error saying that this system of ODEs cannot be solved explicitly (i.e. in closed form). I think that numerical integration is the only way. The r,W,c,h, etc are parameters. Could someone please tell me how I can simulate/solve and plot the ODEs below?
syms f(t) s(t) v(t) r W c h q a k b H K e
r = 1;
W = 0.5;
c = 0.4;
h = 0.9;
q = 9;
a = 5;
k = 0.8;
b = 6;
H = 3;
K = 1.3;
e = 2;
ode1 = diff(f) == r*f*(1 - f/W) - c*s*f - h*(1 - q)*f;
ode2 = diff(s) == s*(-a + k*b*v/(H + v) + k*c*f) - h*K*q*s;
ode3 = diff(v) == v*(e - b*s/(H + v)) - h*q*v;
odes=[ode1;ode2;ode3]
S = dsolve(odes)
plot(S);
Looks like you where previously using a different MATLAB license, which included the Symbolic Math Toolbox. I assume you no longer have it available and you are now looking for numeric alternatives.
You have to define functions for the equations you are trying to solve. Then you can call one of the ode solvers. An example from the documentation:
y0 = [1; 0; 0];
tspan = [0 4*logspace(-6,6)];
M = [1 0 0; 0 1 0; 0 0 0];
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',[1e-6 1e-10 1e-6]);
[t,y] = ode15s(#robertsdae,tspan,y0,options);
Where robertsdae is the equation to solve. The full example including further explanations is available here.

Solving System of Second Order Ordinary Differential Equation in Matlab

Introduction
I am using Matlab to simulate some dynamic systems through numerically solving systems of Second Order Ordinary Differential Equations using ODE45. I found a great tutorial from Mathworks (link for tutorial at end) on how to do this.
In the tutorial the system of equations is explicit in x and y as shown below:
x''=-D(y) * x' * sqrt(x'^2 + y'^2)
y''=-D(y) * y' * sqrt(x'^2 + y'^2) + g(y)
Both equations above have form y'' = f(x, x', y, y')
Question
However, I am coming across systems of equations where the variables can not be solved for explicitly as shown in the example. For example one of the systems has the following set of 3 second order ordinary differential equations:
y double prime equation
y'' - .5*L*(x''*sin(x) + x'^2*cos(x) + (k/m)*y - g = 0
x double prime equation
.33*L^2*x'' - .5*L*y''sin(x) - .33*L^2*C*cos(x) + .5*g*L*sin(x) = 0
A single prime is first derivative
A double prime is second derivative
L, g, m, k, and C are given parameters.
How can Matlab be used to numerically solve a set of second order ordinary differential equations where second order can not be explicitly solved for?
Thanks!
Your second system has the form
a11*x'' + a12*y'' = f1(x,y,x',y')
a21*x'' + a22*y'' = f2(x,y,x',y')
which you can solve as a linear system
[x'', y''] = A\f
or in this case explicitly using Cramer's rule
x'' = ( a22*f1 - a12*f2 ) / (a11*a22 - a12*a21)
y'' accordingly.
I would strongly recommend leaving the intermediate variables in the code to reduce chances for typing errors and avoid multiple computation of the same expressions.
Code could look like this (untested)
function dz = odefunc(t,z)
x=z(1); dx=z(2); y=z(3); dy=z(4);
A = [ [-.5*L*sin(x), 1] ; [.33*L^2, -0.5*L*sin(x)] ]
b = [ [dx^2*cos(x) + (k/m)*y-g]; [-.33*L^2*C*cos(x) + .5*g*L*sin(x)] ]
d2 = A\b
dz = [ dx, d2(1), dy, d2(2) ]
end
Yes your method is correct!
I post the following code below:
%Rotating Pendulum Sym Main
clc
clear all;
%Define parameters
global M K L g C;
M = 1;
K = 25.6;
L = 1;
C = 1;
g = 9.8;
% define initial values for theta, thetad, del, deld
e_0 = 1;
ed_0 = 0;
theta_0 = 0;
thetad_0 = .5;
initialValues = [e_0, ed_0, theta_0, thetad_0];
% Set a timespan
t_initial = 0;
t_final = 36;
dt = .01;
N = (t_final - t_initial)/dt;
timeSpan = linspace(t_final, t_initial, N);
% Run ode45 to get z (theta, thetad, del, deld)
[t, z] = ode45(#RotSpngHndl, timeSpan, initialValues);
%initialize variables
e = zeros(N,1);
ed = zeros(N,1);
theta = zeros(N,1);
thetad = zeros(N,1);
T = zeros(N,1);
V = zeros(N,1);
x = zeros(N,1);
y = zeros(N,1);
for i = 1:N
e(i) = z(i, 1);
ed(i) = z(i, 2);
theta(i) = z(i, 3);
thetad(i) = z(i, 4);
T(i) = .5*M*(ed(i)^2 + (1/3)*L^2*C*sin(theta(i)) + (1/3)*L^2*thetad(i)^2 - L*ed(i)*thetad(i)*sin(theta(i)));
V(i) = -M*g*(e(i) + .5*L*cos(theta(i)));
E(i) = T(i) + V(i);
end
figure(1)
plot(t, T,'r');
hold on;
plot(t, V,'b');
plot(t,E,'y');
title('Energy');
xlabel('time(sec)');
legend('Kinetic Energy', 'Potential Energy', 'Total Energy');
Here is function handle file for ode45:
function dz = RotSpngHndl(~, z)
% Define Global Parameters
global M K L g C
A = [1, -.5*L*sin(z(3));
-.5*L*sin(z(3)), (1/3)*L^2];
b = [.5*L*z(4)^2*cos(z(3)) - (K/M)*z(1) + g;
(1/3)*L^2*C*cos(z(3)) + .5*g*L*sin(z(3))];
X = A\b;
% return column vector [ed; edd; ed; edd]
dz = [z(2);
X(1);
z(4);
X(2)];

MATLAB sparse matrices: Gauss Seidel and power method using a sparse matrix with CSR (Compressed Sparse Row)

this is my first time here so I hope that someone can help me.
I'm trying to implementing the Gauss-Seidel method and the power method using a matrix with the storage CSR or called Morse storage. Unfortunately I can't manage to do better then the following codes:
GS-MORSE:
function [y] = gs_morse(aa, diag, col, row, nmax, tol)
[n, n] = size(A);
y = [1, 1, 1, 1];
m = 1;
while m < nmax,
for i = 1: n,
k1 = row(i);
k2 = row(i + 1) - 1;
for k = k1: k2,
y(i) = y(i) + aa(k) * x(col(k));
y(col(k)) = y(col(k)) + aa(k) * diag(i);
end
k2 = k2 + 1;
y(i) = y(i) + aa(k) * diag(i);
end
if (norm(y - x)) < tol
disp(y);
end
m = m + 1;
for i = 1: n,
x(i) = y(i);
end
end
POWER-MORSE:
I was able only to implement the power method but I don't understand how to use the former matrix... so my code for power method is:
function [y, l] = potencia_iterada(A, v)
numiter=100;
eps=1e-10;
x = v(:);
y = x/norm(x);
l = 0;
for k = 1: numiter,
x = A * y;
y = x / norm(x);
l0 = x.' * y;
if abs(l0) < eps
return
end
l = l0;
end
Please anyone can help me for completing these codes or can explain me how can I do that? I really don't understand how to do. Thank you very much

Matlab NaN and Inf issue

So, I'm implementing the EM algorithm in Matlab, but my matrices quickly end up contaminated by NaN and Inf values. I think it might be caused by matrix inversions, but I'm not sure that's the only reason.
Here is the code:
function [F, Q, R, x_T, P_T] = em_algo(y, G)
% y_t = G_t'*x_t + v_t 1*1 = 1*p p*1
% x_t = F*x_t-1 + w_t p*1 = p*p p*1
% G is T*p
p = size(G,2); % p = nb assets ; G = T*p
q = size(y,2); % q = nb observations ; y = T*q
T = size(y,1); % y is T*1
F = eye(p); % = Transition matrix p*p
Q = eye(p); % innovation (v) covariance matrix p*p
R = eye(q); % noise (w) covariance matrix q x q
x_T_old = zeros(p,T);
mu0 = zeros(p,1);
Sigma = eye(p); % Initial state covariance matrix p*p
converged = 0;
i = 0;
max_iter = 60; % only for testing purposes
while ~converged
if i > max_iter
break;
end
% E step = smoothing
fprintf('Iteration %d\n',i);
[x_T,P_T,P_Tm2] = smoother(G,F,Q,R,mu0,Sigma,y);
%x_T
% M step
A = zeros(p,p);
B = zeros(p,p);
C = zeros(p,p);
R = eye(q);
for t = 2:T % eq (9) in EM paper
A = A + (P_T(:,:,t-1) + (x_T(:,t-1)*x_T(:,t-1)'));
end
for t = 2:T % eq (10)
%B = B + (P_Tm2(:,:,t-1) + (x_T(:,t)*x_T(:,t-1)'));
B = B + (P_Tm2(:,:,t) + (x_T(:,t)*x_T(:,t-1)'));
end
for t = 1:T %eq (11)
C = C + (P_T(:,:,t) + (x_T(:,t)*x_T(:,t)'));
end
F = B*inv(A); %eq (12)
Q = (1/T)*(C - (B*inv(A)*B')); % eq (13) pxp
for t = 1:T
bias = y(t) - (G(t,:)*x_T(:,t));
R = R + ((bias*bias') + (G(t,:)*P_T(:,:,t)*G(t,:)'));
end
R = (1/T)*R;
if i>1
err = norm(x_T-x_T_old)/norm(x_T_old);
if err < 1e-4
converged = 1;
end
end
x_T_old = x_T;
i = i+1;
end
fprintf('EM algorithm iterated %d times\n',i);
end
This iterates until convergence (which never happens due to my issue) and calls smoother.m at each iteration:
function [x_T, P_T, P_Tm2] = smoother(G,F,Q,R,mu0,Sigma,y)
% G is T*p
p = size(mu0,1); % mu0 is p*1
T = size(y,1); % y is T*1
J = zeros(p,p,T);
K = zeros(p,T); % gain matrix
x = zeros(p,T);
x(:,1) = mu0;
x_m1 = zeros(p,T);
x_T = zeros(p,T); % x values when we know all the data
% Notation : x = xt given t ; x_m1 = xt given t-1 (m1 stands for minus
% one)
P = zeros(p,p,T);% array of cov(xt|y1...yt), eq (6) in Shumway & Stoffer 1982
P(:,:,1) = Sigma;
P_m1 = zeros(p,p,T); % Same notation ; = cov(xt, xt-1|y1...yt) , eq (7)
P_T = zeros(p,p,T);
P_Tm2 = zeros(p,p,T); % cov(xT, xT-1|y1...yT)
for t = 2:T %starts at t = 2 because at each time t we need info about t-1
x_m1(:,t) = F*x(:,t-1); % eq A3 ; pxp * px1 = px1
P_m1(:,:,t) = (F*P(:,:,t-1)*F') + Q; % A4 ; pxp * pxp = pxp
if nnz(isnan(P_m1(:,:,t)))
error('NaNs in P_m1 at time t = %d',t);
end
if nnz(isinf(P_m1(:,:,t)))
error('Infs in P_m1 at time t = %d',t);
end
K(:,t) = P_m1(:,:,t)*G(t,:)'*pinv((G(t,:)*P_m1(:,:,t)*G(t,:)') + R); %A5 ; pxp * px1 * 1*1 = p*1
%K(:,t) = P_m1(:,:,t)*G(t,:)'/((G(t,:)*P_m1(:,:,t)*G(t,:)') + R); %A5 ; pxp * px1 * 1*1 = p*1
% The matrix inversion seems to generate NaN values which quickly
% contaminate all the other matrices. There is no warning about
% (close to) singular matrices or whatever. The use of pinv()
% instead of inv() seems to solve the problem... but I don't think
% it's the appropriate way to deal with it, there must be something
% wrong elsewhere
if nnz(isnan(K(:,t)))
error('NaNs in K at time t = %d',t);
end
x(:,t) = x_m1(:,t) + (K(:,t)*(y(t)-(G(t,:)*x_m1(:,t)))); %A6
P(:,:,t) = P_m1(:,:,t) - (K(:,t)*G(t,:)*P_m1(:,:,t)); %A7
end
x_T(:,T) = x(:,T);
P_T(:,:,T) = P(:,:,T);
for t = T:-1:2 % we stop at 2 since we need to use t-1
%P_m1 seem to get really huge (x10^22...), might lead to "Inf"
%values which in turn might screw pinv()
%% inv() caused NaN value to appear, pinv seems to solve the issue
J(:,:,t-1) = P(:,:,t-1)*F'*pinv(P_m1(:,:,t)); % A8 pxp * pxp * pxp
%J(:,:,t-1) = P(:,:,t-1)*F'/(P_m1(:,:,t)); % A8 pxp * pxp * pxp
x_T(:,t-1) = x(:,t-1) + J(:,:,t-1)*(x_T(:,t)-(F*x(:,t-1))); %A9 % Becomes NaN during 8th iteration!
P_T(:,:,t-1) = P(:,:,t-1) + J(:,:,t-1)*(P_T(:,:,t)-P_m1(:,:,t))*J(:,:,t-1)'; %A10
nans = [nnz(isnan(J)) nnz(isnan(P_m1)) nnz(isnan(F)) nnz(isnan(x_T)) nnz(isnan(x_m1))];
if nnz(nans)
error('NaN invasion at time t = %d',t);
end
end
P_Tm2(:,:,T) = (eye(p) - K(:,T)*G(T,:))*F*P(:,:,T-1); % %A12
for t = T:-1:3 % stop at 3 because use of t-2
P_Tm2(:,:,t-1) = P_m1(:,:,t-1)*J(:,:,t-2)' + J(:,:,t-1)*(P_Tm2(:,:,t)-F*P(:,:,t-1))*J(:,:,t-2)'; % A11
end
end
The NaNs and Infs start popping around the ~8th iteration.
I guess in there somewhere I'm doing something unholy with my matrices, but I really have no clue about what's wrong. I trust your expertise.
Thanks in advance for the help.
Rody :
Here is how I generate the data (it's not "real world" data yet, just some test data generated to check that nothing goes wront) :
T = 500;
nbassets = 3;
G = .1 + randn(T,nbassets); % random walk trajectories
y = (1:T).';
y = 1.01.^y; % 1 * T % Exponential 1% returns curve
Dan :
You're right. I indeed lack the math background to really understand how the formulas are derived. I know it doesn't help, but I'm not sure I can remedy that for the time being. :/
Rody : Yes indeed, I arrived at the same conclusion. But I really have no clue what makes it go wrong like that.
Here is a link to the paper :
http://www.stat.pitt.edu/stoffer/em.pdf
The formulas for the smoother are all at the very end, in the appendix. Thanks for your time so far.
As the user appears to have inserted the answer into his question I will post it here:
As mentioned by #Rody the cause of the problem was that the use of inv created NaN or Inf values.
The user 'solved' this by using pinv instead.