Using overridden math function - swift

Trying to compile this code
pow(10,2)
struct Test {
var i:Int
func pow(_ p:Int) -> Int { return pow(i,p) }
}
var s = Test(i:10)
s.pow(2)
gives me a compiler error. Obviously the standard math.h function pow was blinded out by Swift's scoping rules. This rather smells like a compiler error since the math.h version of pow has a different signature. Is there any way to invoke it, though?

There are two problems: The first is how pow(i,p) is resolved.
As described in Swift 3.0: compiler error when calling global func min<T>(T,T) in Array or Dictionary extension, this
can be solved by prepending the module name to the function call.
The second problem is that there is no pow function taking
two integer arguments. There is
public func powf(_: Float, _: Float) -> Float
public func pow(_: Double, _: Double) -> Double
in the standard math library, and
public func pow(_ x: Decimal, _ y: Int) -> Decimal
in the Foundation library. So you have to choose which one to use,
for example:
struct Test {
var i:Int
func pow(_ p:Int) -> Int {
return lrint(Darwin.pow(Double(i),Double(p)))
}
}
which converts the arguments to Double and rounds the result
back to Int.
Alternatively, use iterated multiplication:
struct Test {
var i: Int
func pow(_ p:Int) -> Int {
return (0..<p).reduce(1) { $0.0 * i }
}
}
I observed at https://codereview.stackexchange.com/a/142850/35991 that
this is faster for small exponents. Your mileage may vary.

Related

Cannot convert value of type 'Range<Int>' to expected argument type 'Range<_>'

Using Swift 4.2, I get the title as an error in this function:
func jitter(range: Int) -> Int {
return Int.random(in: 0..<range, using: SystemRandomNumberGenerator())
}
Questions:
What precisely does Range<_> mean?
Is there a better way to get this? I simply want a small random number inside an animation loop.
The Swift compiler is giving you a bad error message. The problem is that the second argument to Int.random(in:using:) must be passed inout (i.e. with a & prefix). This works:
func jitter(range: Int) -> Int {
var rng = SystemRandomNumberGenerator()
return Int.random(in: 0..<range, using: &rng)
}
Even easier, omit the using: parameter altogether (SystemRandomNumberGenerator is the default RNG anyway):
func jitter(range: Int) -> Int {
return Int.random(in: 0..<range)
}

Using #discardableResult for Closures in Swift

Swift 3 has introduced the #discardableResult annotation for functions to disable the warnings for an unused function return value.
I'm looking for a way to silence this warning for closures.
Currently, my code looks like this:
func f(x: Int) -> Int -> Int {
func g(_ y: Int) -> Int {
doSomething(with: x, and: y)
return x*y
}
return g
}
In various places I call f once to obtain a closure g which I then call repeatedly:
let g = f(5)
g(3)
g(7)
g(11)
In most places I'm only interested in the side effects of the nested call to doSomething, and not in the return value of the closure g. With Swift 3, there are now dozens of warnings in my project for the unused result. Is there a way to suppress the warnings besides changing the calls to g to _ = g(...) everywhere? I couldn't find a place where I could place the #discardableResult annotation.
I don't think there's a way to apply that attribute to a closure. You could capture your closure in another that discards the result:
func discardingResult<T, U>(_ f: #escaping (T) -> U) -> (T) -> Void {
return { x in _ = f(x) }
}
let g = f(5)
g(3) // warns
let h = discardingResult(g)
h(4) // doesn't warn
I was looking for an answer to this recently, and I've found another way (a newer way) to do this!
It could arguably be overkill for some simple problems, but I just thought that this is an interesting yet neat approach that's worth sharing.
Say you have a closure that doubles an integer value:
let double = { (int: Int) -> Int in
return int * 2
}
With Swift 5.0 (SE-0216) introducing the #dynamicCallable attribute, you can "wrap" your closure with #discardableResult by creating a dynamically callable class or struct as such:
// same for struct, except without the need of an initializer
#dynamicCallable
class DiscardableResultClosure<T, U> {
var closure: (T) -> U
#discardableResult
func dynamicallyCall(withArguments args: [Any]) -> U {
let arg = args.first as! T
return self.closure(arg)
}
// implicit for struct
init(closure: #escaping (T) -> U) {
self.closure = closure
}
}
double(5) // warning: result of call to function returning 'Int' is unused
let discardableDouble = DiscardableResultClosure(closure: double)
discardableDouble(5) // * no warning *
Even better, in Swift 5.2 (SE-0253), you can create a dynamically callable struct using a built-in callAsFunction method without going through the trouble of using the attribute #dynamicCallable (or using class) with its sometimes cumbersome declaration.
struct DiscardableResultClosure<T, U> {
var closure: (T) -> U
#discardableResult
func callAsFunction(_ arg: T) -> U {
return closure(arg)
}
}
let discardableDouble = DiscardableResultClosure(closure: double)
discardableDouble(5) // * no warning *

Compilation error attempting to use `min()` function in Swift

I'm trying to write an extension for the Swift Int type to save nested min()/max() functions. It looks like this:
extension Int {
func bound(minVal: Int, maxVal: Int) -> Int {
let highBounded = min(self, maxVal)
return max(minVal, highBounded)
}
}
However, I have a compilation error when assigning/computing highBounded:
IntExtensions.swift:13:25: 'Int' does not have a member named 'min'
Why aren't the functions defined by the standard library properly located?
It looks like it is trying to find a method in Int for min() and max() since you are extending Int. You can get around this and use the default min and max functions by specifying the Swift namespace.
extension Int {
func bound(minVal: Int, maxVal: Int) -> Int {
let highBounded = Swift.min(self, maxVal)
return Swift.max(minVal, highBounded)
}
}

Why does the code produces error Type '(int, int)' does not conform to protocol 'IntegerLiteralConvertible'

With the code below, I get "Type '(int, int)' does not conform to protocol 'IntegerLiteralConvertible' instead of missing argument as one would expect. What's IntegerLiteralConvertible and why do you think the compiler produces this error instead for the code below?
I have looked at other SO posts regarding this error but have not gotten any insight from them.
func add(x:Int, y:Int) {
}
add(3)
My best guess is that it tries to convert the (3) tuple into a (Int, Int) tuple.
In fact, this is accepted by the compiler and works as expected:
func add(x: Int, y: Int) -> Int {
return x + y
}
let tuple = (4, 7)
add(tuple)
In playground that outputs 11, which is the expected sum result.
Note: the code above works if the func is global, with no named parameters. If it's an instance or class/static method, then the tuple must include parameter names:
class MyClass {
class func add(# x: Int, y: Int) -> Int {
return x + y
}
}
let tuple = (x: 3, y: 7)
MyClass.add(tuple) // returns 10
As for IntegerLiteralConvertible, it's used to make a class or struct adopting it to be initializable from a literal integer. Let's say you have a struct and you want to be able to instantiate by assigning an literal integer, you achieve it this way:
struct MyDataType : IntegerLiteralConvertible {
var value: Int
static func convertFromIntegerLiteral(value: IntegerLiteralType) -> MyDataType {
return MyDataType(value: value)
}
init(value: Int) {
self.value = value
}
}
and then you can create an instance like this:
let x: MyDataType = 5
It looks like you are trying to use currying — Swift has built-in support for this, but it is not automatic, so you have to be explicit about it when declaring your function:
func add(x:Int)(y:Int) -> Int {
return x + y
}
println(add(3)) // (Function)

Swift: why 'subscript(var digitIndex: Int) -> Int' is a valid function signature?

This piece of code comes from Swift documentation https://developer.apple.com/library/prerelease/mac/documentation/Swift/Conceptual/Swift_Programming_Language/Extensions.html
extension Int {
subscript(var digitIndex: Int) -> Int {
var decimalBase = 1
while digitIndex > 0 {
decimalBase *= 10
--digitIndex
}
return (self / decimalBase) % 10
}
}
Apparently var is a reserved word, so why it is legal to declare: subscript(var digitIndex: Int) -> Int?
If I change the signature to subscript(#digitIndex: Int) -> Int, I will get this compiler error:
My questions are:
1) why the signature is valid?
2) why my change causes an exception?
Declaring a function argument with var means that it can be modified, is not a constant. In your case, without using var, you had a constant argument but you attempted to decrement it. Thus the error.
Your two cases are:
func foo (x: int) { /* x is a constant, like `let x: int` */ }
func foo (var x: int) { /* x is not a constant */ }