Declare variable in Scala - scala

I just new in Scala, I know Scala have three keywords to declare variables is:
def defines a method
val defines a fixed value (which cannot be modified)
var defines a variable (which can be modified)
I am going to write some code to test with an anonymous method.
object Anonymous {
def main(args: Array[String]): Unit = {
def double_1 = (i: Int) => { i * 2 }
val double_2 = (i: Int) => { i * 2 }
var double_3 = (i: Int) => { i * 2 }
println(double_1(2))
println(double_2(2))
println(double_3(2))
}
}
What is the difference about three ways above, when I use double_1, double_2, double_3?
What is the memory segment have to store the variables?
Thanks!

First off, they are not anonymous methods. They are functions and they each have a name so they are not anonymous.
The main difference between them is that double_3 can be reassigned to some different function value.
var double_3 = (i: Int) => { i * 2 }
double_3 = (i: Int) => i + 3 // the compiler allows this
The others cannot.
It would be rather unusual to defined a function as a def. def is mostly used to declare methods because a def is re-evaluated every time it is referenced.
def x = 3 + 4
val y = 3 + 4
Both x and y evaluate to 7, but the addition is redone every time x is referenced. For y the addition is done once, at the definition, and never again.

Related

Is it possible in Scala to make a function that disallows the use of closures?

Say I have some function like this:
def doSomeCode(code: => Unit): Unit = {
println("Doing some code!")
code
}
It takes in a function, prints out "Doing some code!" and then calls the passed function. If for example we called it like:
doSomeCode {
println("Some code done!")
}
It would print out "Doing some code!", followed by "Some code done!".
But I would like to disallow the use of outside variables inside that code block, for example:
def otherFunction(): Unit = {
val number = 10
doSomeCode{
println("The number is " + number)
}
}
This will print out "Doing some code!", followed by "The number is 10". But I would like it to instead throw an error because I do not want number to be in the scope of doSomeCode. Is this possible to achieve in Scala?
To be clear I am not asking if this is a good idea, I just want to know if it is possible.
Edit:
The reason I want this is because I am trying to make a syntax that is perfectly functional, I want a block with no side effects. Ideally the syntax would look like:
val a = 1
val b = 2
val c = 3
val d = 4
val sum = use(a, c, d){
val total = a + c + d
total
}
This way I as a programmer know that the only variables used are a, c, and d and that sum is the only output. Trying to use anything else, eg b, would result in an error. Currently it is not possible to know at a glance what variables a block is using. I can achieve this by just making and using a function like this:
def example(): Unit = {
val a = 1
val b = 2
val c = 3
val d = 4
val sum = sum(a, c, d)
}
def sum(a: Int, b: Int, c: Int): Int = {
val total = a + b + c
total
}
This behaves exactly like how I want it to, but I would like it to be inline with the other code, not outside as an external function.
scala> def mkClosure(i: Int) = { s: String => s"$i - $s" }
mkClosure: (i: Int)String => String
scala> mkClosure(5)
res0: String => String = <function1>
Since whether the function depends on values which aren't parameters isn't encoded in the type system, there's no compiler-enforceable difference in Scala between such a function and a pure one. It's unlikely to be possible with macros: a compiler plugin is probably your best bet, especially if you want to allow certain values (e.g. println) to be used inside a block.

Unexpected result when invoke functions within method in scala

I start to learn scala by writing simple code.
I'm a little confused about the behavior of below code.
class BasicUsage {
private val incr = (x: Int) =>
{
println("incr invoked")
x + 1
}
private val add = (x: Int, y: Int) =>
{
println("add invoked")
if (x == 0 || y == 0) {
0
} else {
x + y
}
}
def testFuns(): Unit =
println(add(1,2))
println(incr(5))
}
When invoking testFuns(), the output is as below,
incr invoked
6
add invoked
3
Per my understanding, functions add() should be called firstly, then incr() should be invoked.
What's the mistake in above code?
Do I misunderstand the usage of function and method?
Thanks very much,
You're missing curly braces in your testFuns method:
def testFuns(): Unit =
println(add(1,2))
println(incr(5))
This means that testFuns() contains only one first statement: println(add(1,2)). The second statement belongs to class and gets executed once BasicUsage instantiated. To fix it do:
def testFuns(): Unit = {
println(add(1,2))
println(incr(5))
}

What does "=> Type" mean in Scala? [duplicate]

As I understand it, in Scala, a function may be called either
by-value or
by-name
For example, given the following declarations, do we know how the function will be called?
Declaration:
def f (x:Int, y:Int) = x;
Call
f (1,2)
f (23+55,5)
f (12+3, 44*11)
What are the rules please?
The example you have given only uses call-by-value, so I will give a new, simpler, example that shows the difference.
First, let's assume we have a function with a side-effect. This function prints something out and then returns an Int.
def something() = {
println("calling something")
1 // return value
}
Now we are going to define two function that accept Int arguments that are exactly the same except that one takes the argument in a call-by-value style (x: Int) and the other in a call-by-name style (x: => Int).
def callByValue(x: Int) = {
println("x1=" + x)
println("x2=" + x)
}
def callByName(x: => Int) = {
println("x1=" + x)
println("x2=" + x)
}
Now what happens when we call them with our side-effecting function?
scala> callByValue(something())
calling something
x1=1
x2=1
scala> callByName(something())
calling something
x1=1
calling something
x2=1
So you can see that in the call-by-value version, the side-effect of the passed-in function call (something()) only happened once. However, in the call-by-name version, the side-effect happened twice.
This is because call-by-value functions compute the passed-in expression's value before calling the function, thus the same value is accessed every time. Instead, call-by-name functions recompute the passed-in expression's value every time it is accessed.
Here is an example from Martin Odersky:
def test (x:Int, y: Int)= x*x
We want to examine the evaluation strategy and determine which one is faster (less steps) in these conditions:
test (2,3)
call by value: test(2,3) -> 2*2 -> 4
call by name: test(2,3) -> 2*2 -> 4
Here the result is reached with the same number of steps.
test (3+4,8)
call by value: test (7,8) -> 7*7 -> 49
call by name: (3+4) (3+4) -> 7(3+4)-> 7*7 ->49
Here call by value is faster.
test (7,2*4)
call by value: test(7,8) -> 7*7 -> 49
call by name: 7 * 7 -> 49
Here call by name is faster
test (3+4, 2*4)
call by value: test(7,2*4) -> test(7, 8) -> 7*7 -> 49
call by name: (3+4)(3+4) -> 7(3+4) -> 7*7 -> 49
The result is reached within the same steps.
In the case of your example all the parameters will be evaluated before it's called in the function , as you're only defining them by value.
If you want to define your parameters by name you should pass a code block:
def f(x: => Int, y:Int) = x
This way the parameter x will not be evaluated until it's called in the function.
This little post here explains this nicely too.
To iteratate #Ben's point in the above comments, I think it's best to think of "call-by-name" as just syntactic sugar. The parser just wraps the expressions in anonymous functions, so that they can be called at a later point, when they are used.
In effect, instead of defining
def callByName(x: => Int) = {
println("x1=" + x)
println("x2=" + x)
}
and running:
scala> callByName(something())
calling something
x1=1
calling something
x2=1
You could also write:
def callAlsoByName(x: () => Int) = {
println("x1=" + x())
println("x2=" + x())
}
And run it as follows for the same effect:
callAlsoByName(() => {something()})
calling something
x1=1
calling something
x2=1
I will try to explain by a simple use case rather than by just providing an example
Imagine you want to build a "nagger app" that will Nag you every time since time last you got nagged.
Examine the following implementations:
object main {
def main(args: Array[String]) {
def onTime(time: Long) {
while(time != time) println("Time to Nag!")
println("no nags for you!")
}
def onRealtime(time: => Long) {
while(time != time) println("Realtime Nagging executed!")
}
onTime(System.nanoTime())
onRealtime(System.nanoTime())
}
}
In the above implementation the nagger will work only when passing by name
the reason is that, when passing by value it will re-used and therefore the value will not be re-evaluated while when passing by name the value will be re-evaluated every time the variables is accessed
Typically, parameters to functions are by-value parameters; that is, the value of the parameter is determined before it is passed to the function. But what if we need to write a function that accepts as a parameter an expression that we don't want evaluated until it's called within our function? For this circumstance, Scala offers call-by-name parameters.
A call-by-name mechanism passes a code block to the callee and each time the callee accesses the parameter, the code block is executed and the value is calculated.
object Test {
def main(args: Array[String]) {
delayed(time());
}
def time() = {
println("Getting time in nano seconds")
System.nanoTime
}
def delayed( t: => Long ) = {
println("In delayed method")
println("Param: " + t)
t
}
}
1. C:/>scalac Test.scala
2. scala Test
3. In delayed method
4. Getting time in nano seconds
5. Param: 81303808765843
6. Getting time in nano seconds
As i assume, the call-by-value function as discuss above pass just the values to the function. According to Martin Odersky It is a Evaluation strategy follow by a Scala that play the important role in function evaluation. But, Make it simple to call-by-name. its like a pass the function as a argument to the method also know as Higher-Order-Functions. When the method access the value of passed parameter, it call the implementation of passed functions. as Below:
According to #dhg example, create the method first as:
def something() = {
println("calling something")
1 // return value
}
This function contain one println statement and return an integer value. Create the function, who have arguments as a call-by-name:
def callByName(x: => Int) = {
println("x1=" + x)
println("x2=" + x)
}
This function parameter, is define an anonymous function who have return one integer value. In this x contain an definition of function who have 0 passed arguments but return int value and our something function contain same signature. When we call the function, we pass the function as a argument to callByName. But in the case of call-by-value its only pass the integer value to the function. We call the function as below:
scala> callByName(something())
calling something
x1=1
calling something
x2=1
In this our something method called twice, because when we access the value of x in callByName method, its call to the defintion of something method.
Call by value is general use case as explained by many answers here..
Call-by-name passes a code block to the caller and each time the
caller accesses the parameter, the code block is executed and the
value is calculated.
I will try to demonstrate call by name more simple way with use cases below
Example 1:
Simple example/use case of call by name is below function, which takes function as parameter and gives the time elapsed.
/**
* Executes some code block and prints to stdout the
time taken to execute the block
for interactive testing and debugging.
*/
def time[T](f: => T): T = {
val start = System.nanoTime()
val ret = f
val end = System.nanoTime()
println(s"Time taken: ${(end - start) / 1000 / 1000} ms")
ret
}
Example 2:
apache spark (with scala) uses logging using call by name way see Logging trait
in which its lazily evaluates whether log.isInfoEnabled or not from the below method.
protected def logInfo(msg: => String) {
if (log.isInfoEnabled) log.info(msg)
}
In a Call by Value, the value of the expression is pre-computed at the time of the function call and that particular value is passed as the parameter to the corresponding function. The same value will be used all throughout the function.
Whereas in a Call by Name, the expression itself is passed as a parameter to the function and it is only computed inside the function, whenever that particular parameter is called.
The difference between Call by Name and Call by Value in Scala could be better understood with the below example:
Code Snippet
object CallbyExample extends App {
// function definition of call by value
def CallbyValue(x: Long): Unit = {
println("The current system time via CBV: " + x);
println("The current system time via CBV " + x);
}
// function definition of call by name
def CallbyName(x: => Long): Unit = {
println("The current system time via CBN: " + x);
println("The current system time via CBN: " + x);
}
// function call
CallbyValue(System.nanoTime());
println("\n")
CallbyName(System.nanoTime());
}
Output
The current system time via CBV: 1153969332591521
The current system time via CBV 1153969332591521
The current system time via CBN: 1153969336749571
The current system time via CBN: 1153969336856589
In the above code snippet, for the function call CallbyValue(System.nanoTime()), the system nano time is pre-calculated and that pre-calculated value has been passed a parameter to the function call.
But in the CallbyName(System.nanoTime()) function call, the expression "System.nanoTime())" itself is passed as a parameter to the function call and the value of that expression is calculated when that parameter is used inside the function.
Notice the function definition of the CallbyName function, where there is a => symbol separating the parameter x and its datatype. That particular symbol there indicates the function is of call by name type.
In other words, the call by value function arguments are evaluated once before entering the function, but the call by name function arguments are evaluated inside the function only when they are needed.
Hope this helps!
Here is a quick example I coded to help a colleague of mine who is currently taking the Scala course. What I thought was interesting is that Martin didn't use the && question answer presented earlier in the lecture as an example. In any event I hope this helps.
val start = Instant.now().toEpochMilli
val calc = (x: Boolean) => {
Thread.sleep(3000)
x
}
def callByValue(x: Boolean, y: Boolean): Boolean = {
if (!x) x else y
}
def callByName(x: Boolean, y: => Boolean): Boolean = {
if (!x) x else y
}
new Thread(() => {
println("========================")
println("Call by Value " + callByValue(false, calc(true)))
println("Time " + (Instant.now().toEpochMilli - start) + "ms")
println("========================")
}).start()
new Thread(() => {
println("========================")
println("Call by Name " + callByName(false, calc(true)))
println("Time " + (Instant.now().toEpochMilli - start) + "ms")
println("========================")
}).start()
Thread.sleep(5000)
The output of the code will be the following:
========================
Call by Name false
Time 64ms
========================
Call by Value false
Time 3068ms
========================
Parameters are usually pass by value, which means that they'll be evaluated before being substituted in the function body.
You can force a parameter to be call by name by using the double arrow when defining the function.
// first parameter will be call by value, second call by name, using `=>`
def returnOne(x: Int, y: => Int): Int = 1
// to demonstrate the benefits of call by name, create an infinite recursion
def loop(x: Int): Int = loop(x)
// will return one, since `loop(2)` is passed by name so no evaluated
returnOne(2, loop(2))
// will not terminate, since loop(2) will evaluate.
returnOne(loop(2), 2) // -> returnOne(loop(2), 2) -> returnOne(loop(2), 2) -> ...
There are already lots of fantastic answers for this question in Internet. I will write a compilation of several explanations and examples I have gathered about the topic, just in case someone may find it helpful
INTRODUCTION
call-by-value (CBV)
Typically, parameters to functions are call-by-value parameters; that is, the parameters are evaluated left to right to determine their value before the function itself is evaluated
def first(a: Int, b: Int): Int = a
first(3 + 4, 5 + 6) // will be reduced to first(7, 5 + 6), then first(7, 11), and then 7
call-by-name (CBN)
But what if we need to write a function that accepts as a parameter an expression that we don't to evaluate until it's called within our function? For this circumstance, Scala offers call-by-name parameters. Meaning the parameter is passed into the function as it is, and its valuation takes place after substitution
def first1(a: Int, b: => Int): Int = a
first1(3 + 4, 5 + 6) // will be reduced to (3 + 4) and then to 7
A call-by-name mechanism passes a code block to the call and each time the call accesses the parameter, the code block is executed and the value is calculated. In the following example, delayed prints a message demonstrating that the method has been entered. Next, delayed prints a message with its value. Finally, delayed returns ‘t’:
object Demo {
def main(args: Array[String]) {
delayed(time());
}
def time() = {
println("Getting time in nano seconds")
System.nanoTime
}
def delayed( t: => Long ) = {
println("In delayed method")
println("Param: " + t)
}
}
In delayed method
Getting time in nano seconds
Param: 2027245119786400
PROS AND CONS FOR EACH CASE
CBN:
+Terminates more often * check below above termination *
+ Has the advantage that a function argument is not evaluated if the corresponding parameter is unused in the evaluation of the function body
-It is slower, it creates more classes (meaning the program takes longer to load) and it consumes more memory.
CBV:
+ It is often exponentially more efficient than CBN, because it avoids this repeated recomputation of arguments expressions that call by name entails. It evaluates every function argument only once
+ It plays much nicer with imperative effects and side effects, because you tend to know much better when expressions will be evaluated.
-It may lead to a loop during its parameters evaluation * check below above termination *
What if termination is not guaranteed?
-If CBV evaluation of an expression e terminates, then CBN evaluation of e terminates too
-The other direction is not true
Non-termination example
def first(x:Int, y:Int)=x
Consider the expression first(1,loop)
CBN: first(1,loop) → 1
CBV: first(1,loop) → reduce arguments of this expression. Since one is a loop, it reduce arguments infinivly. It doesn’t terminate
DIFFERENCES IN EACH CASE BEHAVIOUR
Let's define a method test that will be
Def test(x:Int, y:Int) = x * x //for call-by-value
Def test(x: => Int, y: => Int) = x * x //for call-by-name
Case1 test(2,3)
test(2,3) → 2*2 → 4
Since we start with already evaluated arguments it will be the same amount of steps for call-by-value and call-by-name
Case2 test(3+4,8)
call-by-value: test(3+4,8) → test(7,8) → 7 * 7 → 49
call-by-name: (3+4)*(3+4) → 7 * (3+4) → 7 * 7 → 49
In this case call-by-value performs less steps
Case3 test(7, 2*4)
call-by-value: test(7, 2*4) → test(7,8) → 7 * 7 → 49
call-by-name: (7)*(7) → 49
We avoid the unnecessary computation of the second argument
Case4 test(3+4, 2*4)
call-by-value: test(7, 2*4) → test(7,8) → 7 * 7 → 49
call-by-name: (3+4)*(3+4) → 7*(3+4) → 7*7 → 49
Different approach
First, let's assume we have a function with a side-effect. This function prints something out and then returns an Int.
def something() = {
println("calling something")
1 // return value
}
Now we are going to define two function that accept Int arguments that are exactly the same except that one takes the argument in a call-by-value style (x: Int) and the other in a call-by-name style (x: => Int).
def callByValue(x: Int) = {
println("x1=" + x)
println("x2=" + x)
}
def callByName(x: => Int) = {
println("x1=" + x)
println("x2=" + x)
}
Now what happens when we call them with our side-effecting function?
scala> callByValue(something())
calling something
x1=1
x2=1
scala> callByName(something())
calling something
x1=1
calling something
x2=1
So you can see that in the call-by-value version, the side-effect of the passed-in function call (something()) only happened once. However, in the call-by-name version, the side-effect happened twice.
This is because call-by-value functions compute the passed-in expression's value before calling the function, thus the same value is accessed every time. However, call-by-name functions recompute the passed-in expression's value every time it is accessed.
EXAMPLES WHERE IT IS BETTER TO USE CALL-BY-NAME
From: https://stackoverflow.com/a/19036068/1773841
Simple performance example: logging.
Let's imagine an interface like this:
trait Logger {
def info(msg: => String)
def warn(msg: => String)
def error(msg: => String)
}
And then used like this:
logger.info("Time spent on X: " + computeTimeSpent)
If the info method doesn't do anything (because, say, the logging level was configured for higher than that), then computeTimeSpent never gets called, saving time. This happens a lot with loggers, where one often sees string manipulation which can be expensive relative to the tasks being logged.
Correctness example: logic operators.
You have probably seen code like this:
if (ref != null && ref.isSomething)
Imagine you would declare && method like this:
trait Boolean {
def &&(other: Boolean): Boolean
}
then, whenever ref is null, you'll get an error because isSomething will be called on a nullreference before being passed to &&. For this reason, the actual declaration is:
trait Boolean {
def &&(other: => Boolean): Boolean =
if (this) this else other
}
Going through an example should help you better understand the difference.
Let's definie a simple function that returns the current time:
def getTime = System.currentTimeMillis
Now we'll define a function, by name, that prints two times delayed by a second:
def getTimeByName(f: => Long) = { println(f); Thread.sleep(1000); println(f)}
And a one by value:
def getTimeByValue(f: Long) = { println(f); Thread.sleep(1000); println(f)}
Now let's call each:
getTimeByName(getTime)
// prints:
// 1514451008323
// 1514451009325
getTimeByValue(getTime)
// prints:
// 1514451024846
// 1514451024846
The result should explain the difference. The snippet is available here.
CallByName is invoked when used and callByValue is invoked whenever the statement is encountered.
For example:-
I have a infinite loop i.e. if you execute this function we will never get scala prompt.
scala> def loop(x:Int) :Int = loop(x-1)
loop: (x: Int)Int
a callByName function takes above loop method as an argument and it is never used inside its body.
scala> def callByName(x:Int,y: => Int)=x
callByName: (x: Int, y: => Int)Int
On execution of callByName method we don't find any problem ( we get scala prompt back ) as we are no where using the loop function inside callByName function.
scala> callByName(1,loop(10))
res1: Int = 1
scala>
a callByValue function takes above loop method as a parameter as a result inside function or expression is evaluated before executing outer function there by loop function executed recursively and we never get scala prompt back.
scala> def callByValue(x:Int,y:Int) = x
callByValue: (x: Int, y: Int)Int
scala> callByValue(1,loop(1))
See this:
object NameVsVal extends App {
def mul(x: Int, y: => Int) : Int = {
println("mul")
x * y
}
def add(x: Int, y: Int): Int = {
println("add")
x + y
}
println(mul(3, add(2, 1)))
}
y: => Int is call by name. What is passed as call by name is add(2, 1). This will be evaluated lazily. So output on console will be "mul" followed by "add", although add seems to be called first. Call by name acts as kind of passing a function pointer.
Now change from y: => Int to y: Int. Console will show "add" followed by "mul"! Usual way of evaluation.
I don't think all the answers here do the correct justification:
In call by value the arguments are computed just once:
def f(x : Int, y :Int) = x
// following the substitution model
f(12 + 3, 4 * 11)
f(15, 4194304)
15
you can see above that all the arguments are evaluated whether needed are not, normally call-by-value can be fast but not always like in this case.
If the evaluation strategy was call-by-name then the decomposition would have been:
f(12 + 3, 4 * 11)
12 + 3
15
as you can see above we never needed to evaluate 4 * 11 and hence saved a bit of computation which may be beneficial sometimes.
Scala variable evaluation explained here in better https://sudarshankasar.medium.com/evaluation-rules-in-scala-1ed988776ae8
def main(args: Array[String]): Unit = {
//valVarDeclaration 2
println("****starting the app***") // ****starting the app***
val defVarDeclarationCall1 = defVarDeclaration // defVarDeclaration 1
val defVarDeclarationCall2 = defVarDeclaration // defVarDeclaration 1
val valVarDeclarationCall1 = valVarDeclaration //
val valVarDeclarationCall2 = valVarDeclaration //
val lazyValVarDeclarationCall1 = lazyValVarDeclaration // lazyValVarDeclaration 3
val lazyValVarDeclarationCall2 = lazyValVarDeclaration //
callByValue({
println("passing the value "+ 10)
10
}) // passing the value 10
// call by value example
// 10
callByName({
println("passing the value "+ 20)
20
}) // call by name example
// passing the value 20
// 20
}
def defVarDeclaration = {
println("defVarDeclaration " + 1)
1
}
val valVarDeclaration = {
println("valVarDeclaration " + 2)
2
}
lazy val lazyValVarDeclaration = {
println("lazyValVarDeclaration " + 3)
3
}
def callByValue(x: Int): Unit = {
println("call by value example ")
println(x)
}
def callByName(x: => Int): Unit = {
println("call by name example ")
println(x)
}

what's the difference between def and var/val for an anonymous function

I'm confused about anonymous function definitions as following:
var plusOne = (x:Int)=>x+1
// or val plusOne=(x:Int)=>x+1
println(plusOne(2))
Or
def plusOne = (x:Int)=>x+1
println(plusOne(2))
What's the difference please in var/val and def for a function name.
val declares an "immutable variable or rather symbol" that doesn't allow reassignment, right hand side of the assignment is evaluated immediately
var declares a "mutable variable" that allows reassignments later to the symbol, right hand side of the assignment is evaluated immediately just like val
def declares an "immutable symbol" that doesn't allow reassignment, right hand side is evaluated lazily, i.e. whenever that symbol is referenced later in the code
Example -
var plusOneVar = (x:Int)=>x+1
val plusOneVal = (x:Int)=>x+1
def plusOneDef = (x:Int)=>x+1
plusOneVar = (x:Int)=>x+2 // Reassignment to var is valid
plusOneVal = (x:Int)=>x+2 // Compile time error, reassignment to val
plusOneDef = (x:Int)=>x+2 // Compile time error, reassignment to val
Because you are looking at an example with functions, it is hard to understand. Let's try to understand it with simple variables.
var symbolVar = 100 // line 1
val symbolVal = symbolVar // line 2
def symbolDef = symbolVar // line 3
println(symbolVar) // prints 100
println(symbolVal) // prints 100
println(symbolDef) // prints 100 - no surprise yet
symbolVar = symbolVar + 1
println(symbolVal) // still prints 100 which was evaluated and assigned on line 2
println(symbolDef) // prints 101 as symbolDef is a def and it depends on symbolVar, line 3 is evaluated again
var plusOne can be reassigned. val plusOne cannot be reassigned. Both are evaluated once. def plusOne is evaluated each time it is called
Note also with val (or var) one instance of the function is created and is used for any number of invocations to that function, whereas with def a new instance of the function is created for each invocation. Yet, for
def f (i:Int) = i+1
f: (i: Int)Int
note
val g = f _
g: Int => Int = <function1>
It might be clear from the Class File Disassembler results using javap. Save the following code as Test.scala
class Test {
val fVal: Int => Int = x => x + 1
var fVar: Int => Int = x => x + 1
def fDef(x: Int): Int = { x + 1 }
}
and do scalac Test.scala; javap Test will show
Compiled from "Test.scala"
public class Test {
public scala.Function1<java.lang.Object, java.lang.Object> fVal();
public scala.Function1<java.lang.Object, java.lang.Object> fVar();
public void fVar_$eq(scala.Function1<java.lang.Object, java.lang.Object>);
public int fDef(int);
public Test();
}
As is shown in the results above, val and fVar are represented as methods that return a Function1 object. The difference is fVar has an additional "setter". While fDef is like normal Java method.

DRY when passing similar functions to Scala map()

def doubleList(noList:List[Int]) = {
val result = noList.map{ number =>
number*2
}
result
}
def halfList(noList:List[Int]) = {
val result = noList.map{ number =>
number/2
}
result
}
def mapFunctionDRY(noList:List[Int])(codeBlock: () => Int) = {
}
println(halfList(List(1,2,3)))
println(doubleList(List(1,2,4)))
I was playing around with scala and noticed violation of DRY (Dont Repeat Yourself) in the above two functions doubleList and halfList. I want the code common in both the function to be isolated and just pass the code block which is different. That way my code would not be violating DRY principle. I know that you could pass in code block as argument in scala. That is what I intend to do in mapFunctionDRY
I want mapFunctionDRY to be in this way
def mapFunctionDRY(noList:List[Int])(codeBlock: () => Int) = {
noList.map{ number =>
codeBlock()
}
}
And code in doubleList and halfList to be similar to this
def doubleList(noList:List[Int]) = { mapFunctionDRY(noList){ () => number*2 } }
But I would get a compilation error if I do such thing. How can I make the code pass in as the parameter in this case to avoid violation of DRY. Can this code be reduced further to keep it DRY?
You don't need to reinvent job that map does quite DRY:
def double(x: Int) = x * 2
def half(x: Int) = x / 2
val xs = List(1,2,3,4)
xs.map(double)
// List[Int] = List(2, 4, 6, 8)
xs.map(half)
// List[Int] = List(0, 1, 1, 2)
The compilation error occurs because you want to map each Int to another Int. codeBlock: () => Int is a function that takes no argument.
codeBlock: Int => Int should do what you want. Then you can define something like this:
def doubleList(noList:List[Int]) = { mapFunctionDRY(noList){ (number : Int) => number*2 } }
Haven't tested it though.
Edit: And like the others said. This function is not really useful because it's like map but weaker in the sense that it can only be applied to List[Int]
Why are you building a wrapper around map, which actually provides the dry-est solution to your problem? I would suggest a different strategy:
val mapDouble = (x: Int) => x * 2
val mapHalf = (x: Int) => x / 2
List(1, 2, 3).map(mapDouble)
List(1, 2, 3).map(mapHalf)
Your functions operate on one element of a list. Therefore instead of codeBlock being a () => Int, I would change it to (Int) => Int. So given one element of a list what do you want to do with it.
This results in the following code:
def mapFunctionDRY(noList:List[Int])(elementFn: (Int) => Int) = {
noList.map{ number =>
elementFn(number)
}
}
And if you're into short code, then the equivalent code is:
def mapFunctionDRY(noList:List[Int])(elementFn: (Int) => Int) = noList.map(elementFn)
There are many other ways to keep being DRY. For an example your could define the operations separately to be able to reuse them:
val doubleOperation: Int => Int = _ * 2
val halfOperation: Int => Int = _ / 2
def doubleList(noList:List[Int]) = noList.map(doubleOperation)
def halfList(noList:List[Int]) = noList.map(halfOperation)
Or you could use function currying to save yourself one line of code:
def mapFunction(fn: (Int) => Int)(noList: List[Int]) = noList.map(fn)
val doubleList = mapFunction(_ * 2)
val halfList = mapFunction(_ / 2)
I think what you are looking for is Currying in this regard.
def func(factor:Double)(noList:List[Int]) ={
val result = noList.map{ number =>
number*factor
}
result
Now you can pass this function with func(0.5f)(noList) or func(1.0f)(noList)
You could even have References to the different Versions of your Function.
halfed = x:List[Int] => func(0.5f)(x)
doubled = x:List[Int] => func(2.0f)(x)