I want to take a wav. file and plot it in Time Domain and Frequency Domain on MATLAB.
I have this code thus far;
[y,fs]=wavread('FireAlarm');
%wavread=the function that is going to read the wav.file
%y=samples
%fs=sampling frequency
%'FireAlarm'=wav file
t=linespace(0,length(y)/fs,length(y));
%linespace=the function that is going to create the time vector
%0=start time
%length(y)/fs=ending time
%length(y)= number of samples in y
plot(t,y)
Nfft=1024;
%Nfft=the length of fft
f=linespace(0,fs,Nfft);
%f= frequency vector
%0=first frequency
%fs=ending frequency
%nfft=length of the frequency vector
G=abs(fft(y,Nfft));
%G= the fft of the samples y in 1024 points
figure;plot(f(1:Nfft/2),G(1:Nfft/2)
Before I can even finish typing the first section, MATLAB tells there is an undefined function or variable 'wavread'.
Anyone know why this may be?
Related
my friends good evening, i am trying to construct model in simulink which will analyze frequency content of signal consisting of two sinusoidal function, here is corresponding simulink model
first sinusoidal functions' parameters are :
Amplitude is 20 and frequency is 2pi30 ,sample time is 0.01(sampling frequency is 100), for the second sinusoidal function we have amplitude 30 and frequency content as 2pi10(so frequency is 10 in first and 30 in second), i have added those two signal and using Spectrum Analyzer i want to display frequency contents(if i would have possibility to use vector scope before, then i can use fft, abs and then vector scope to show result, but here when i run simulation, i got following result :
originally it shows me in KHz, i tried to replace parameters from here :
for example sampling frequency is 100 also frequency axis should be between [0,50] but no result yet, so how can i show result ? am i missing something?
I am currently working on a project for my Speech Processing course and have just finished making a time waveform plot as well as both wide/narrow band spectrograms for a spoken word in Spanish (aire).
The next part of the project is as follows:
Make a 3-D plot of each word signal, as a function of time, frequency and power spectral density. The analysis time step should be 20ms, and power density should be computed using a 75%-overlapped Hamming window and the FFT. Choose a viewing angle that best highlights the signal features as they change in time and frequency.
I was hoping that someone can offer me some guidance as to how to begin doing this part. I have started by looking here under the Spectrogram and Instantaneous Frequency heading but was unsure of how to add PSD to the script.
Thanks
I am going to give you an example.
I am going to generate a linear chirp signal.
Fs = 1000;
t = 0:1/Fs:2;
y = chirp(t,100,2,300,'linear');
And then, I am going to define number of fft and hamming window.
nfft=128;
win=hamming(nfft);
And then I am going to define length of overlap, 75% of nfft.
nOvl=nfft*0.75;
And then, I am performing STFT by using spectrogram function.
[s,f,t,pxx] = spectrogram(y,win,nOvl,nfft,Fs,'psd');
'y' is time signal, 'win' is defined hamming window, 'nOvl' is number of overlap, 'nfft' is number of fft, 'Fs' is sampling frequency, and 'psd' makes the result,pxx, as power spectral density.
Finally, I am going to plot the 'pxx' by using waterfall graph.
waterfall(f,t,pxx')
xlabel('frequency(Hz)')
ylabel('time(sec)')
zlabel('PSD')
The length of FFT, corresponding to 20ms, depends on sampling frequency of your signal.
EDIT : In plotting waterfall graph, I transposed pxx to change t and f axis.
I use the matlab software. To my question.
I have a audio signal, on which i am applying a STFT. I take a segment
(46 ms, specifially chosen) out of my signal y(audio signal) and use a FFT on it. Then i go to the next segment, until to end of my audio signal.
My WAV-File is 10.8526 seconds long. If I have a sample frequency of
44100Hz, this means my y is 10.8526*fs = 478599.66 which is
shown in the workspace as 478 6000 x2 double.
The length of my fft is 2048. My signal are differentiated under lower frequency band [0 300], mfb [301 5000] and hfb [5001 22050(fs/2)].
The bands are just an example and not the actual matlab code. Basicall what i want (or what I am trying to do), is to get the values of my bins in the defined frequency band and do a arithmetic mean on it.
I chose 46 ms because, I want it as long as the fft length, or nearly as long as the fft. (It is not exact).Afterwards, I want to try plotting it, but that is not important right now. Any help is appreciated.
Fourier transform of a signal in time domain in a vector of size n will return another vector of size n of same signal but in frequency domain.
Frequency domain will be from 0 (dc offset) to your sampling frequency. But you will only be able to use half of that. Second half would have same values but mirrored.
You can obtain the center frequency of each useful bin with:
f = Fs*(0:(n/2))/n;
I am trying to use the ifft function in MATLAB on some experimental data, but I don't get the expected results.
I have frequency data of a logarithmic sine sweep excitation, therefore I know the amplitude [g's], the frequency [Hz] and the phase (which is 0 since the point is a piloting point).
I tried to feed it directly to the ifft function, but I get a complex number as a result (and I expected a real result since it is a time signal). I thought the problem could be that the signal is not symmetric, therefore I computed the symmetric part in this way (in a 'for' loop)
x(i) = conj(x(mod(N-i+1,N)+1))
and I added it at the end of the amplitude vector.
new_amp = [amplitude x];
In this way the new amplitude vector is symmetric, but now I also doubled the dimension of that vector and this means I have to double the dimension of the frequency vector also.
Anyway, I fed the new amplitude vector to the ifft but still I don't get the logarithmic sine sweep, although this time the output is real as expected.
To compute the time [s] for the plot I used the following formula:
t = 60*3.33*log10(f/f(1))/(sweep rate)
What am I doing wrong?
Thank you in advance
If you want to create identical time domain signal from specified frequency values you should take into account lots of details. It seems to me very complicated problem and I think it need very strength background on the mathematics behind it.
But I think you may work on some details to get more acceptable result:
1- Time vector should be equally spaced based on sampling from frequency steps and maximum.
t = 0:1/fs:N/fs;
where: *N* is the length of signal in frequency domain, and *fs* is twice the
highest frequency in frequency domain.
2- You should have some sort of logarithmic phases on the frequency bins I think.
3- Your signal in frequency domain must be even to have real signal in time domain.
I hope this could help, even for someone to improve it.
I know that there are a lot of similar questions to this, I am still unable to figure out the answer.
Let's say we have time signal in MATLAB:
t=0:1/44100:1
and a cosine signal with frequency 500Hz:
x=cos(2*pi*500*t);
Now, I am trying to plot the magnitude spectrum obtained using the fft command on signal x
FFT=abs(fft(x))
plot(FFT)
According to the theory, we should get two peaks in the plot, one at -500 Hz and the other at 500Hz.
What I don't understand is that I do get two peaks but I can't figure out at what frequencies these peaks are. I know there is a way to figure out the frequency using the FFT index, length of the input signal and the sampling frequency but I still can't calculate the frequency.
I know that there are methods to align the FFT plots so that the peaks lie at the index number of the frequency they represent by using the fftshift function, but what I want is to figure out the frequency using the the plot resulting from simply calling this function:
FFT=fft(x)
In this case, I already know that signal contains a cosine of 500Hz, but what if the signal that we want to get the FFT of is not known before time. How can we get the frequency values of the peaks in that sample using the output from the fft function?
You need to generate the frequency array yourself and plot your FFT result against it.
Like this:
function [Ycomp, fHz] = getFFT(data, Fs)
len = length(data);
NFFT = 2^nextpow2(len);
Ydouble = fft(data, NFFT)/len; % Double-sided FFT
Ycomp = Ydouble(1:NFFT/2+1); % Single-sided FFT, complex
fHz = Fs/2*linspace(0,1,NFFT/2+1); % Frequency array in Hertz.
semilogx(fHz, abs(Ycomp))
end
You will see peaks at 500 Hz and Fs - 500 Hz (i.e. 44100 - 500 = 43600 Hz in your particular case).
This is because the real-to-complex FFT output is complex conjugate symmetric - the top half of the spectrum is a "mirror image" of the bottom half when you are just looking at the magnitude and is therefore redundant.
Note that of plotting power spectra you can usually save yourself a lot of work by using MATLAB's periodogram function rather than dealing directly with all the details of FFT, window functions, plotting, etc.