"Linear Model" of a Pendulum via Euler's Method in MATLAB - matlab

In my problem the linear modal is defined as the first term in the series expansion of sin(x) so:
sin(x) = x is the linear modal.
So with this, I then have to write
as a system of x' and y', so:
I tried the linear modal in Euler's method, with initial conditions X(1) = 1 and V(1)=0 (V would be y then following the last equations):
for i = 1:1000
V(i+1) = V(i)-(1.*s) ;
X(i+1) = V(i);
end
Where s is the step size. But apparently I'm supposed to get a circle when I plot V with respect to X which makes sense, but all I get is a straight line.
If I change it to:
for i = 1:1000
V(i+1) = V(i)-(X(i).*s) ;
X(i+1) = V(i);
end
With s=0.8 I get a spiral, which looks like a development but I'm no closer to the circular shape that I am expecting. I think I just need a fresh pair of eyes to see where perhaps an obvious error lies.

You are coding something drastically different than you wrote down in the equations. If you wrote down the equations with the same order and variable names, you would probably already see your error.
Also, the following things should have tipped you off:
The step size does not appear as a linear factor in both equations.
In your first attempt, X has no impact on V.
Nonetheless, here is a direct translation of your equations to code (and the Euler method):
for i = 1:1000
x(i+1) = x(i) + y(i)*s;
y(i+1) = y(i) + sin(x(i))*s;
end
If you really want to use the linear approximation, just replace sin(x(i)) by x(i). However, the main point of the linear approximation is that it’s nice for analytical solutions and theoretical analysis. Since you are solving the problem numerically, I do not see a need for it.
Finally, note that since you are integrating a Hamiltonian system, you will very quickly see the problems of the Euler method, i.e., you will always get a blatant spiral. Just imagine what would happen if you simulate the motion of the earth around the sun with tangential vectors:

Related

Solve system of differential equation with embedded non diferential equations, using Octave/Matlab (see picture)

I have the following equation system (click to see picture)
, and would like to solve for X(t), Y(t), Z(t), hopefully using Octave/Matlab, which I'm familiar with, but I would not mind solving it by any other means necessary.
Now, Fsolve is useful for regular equation systems, and Ode45, Lsode are useful for differential equations. But, what about this particular system? Note that the differential equation at the bottom contains not only Y, but, also, both X and Z, and those are dependent on the two non-differential equations above.
To be honest, I'm not quite sure how to approach a basic code to solve this system, and after spending some time thinking, I decided to ask for help. I really appreciate any guidance to solve this problem somewhat efficiently, if it is even possible. Almost any reply would be of some use to me right now.
If you know y, you can solve for x, and this even unconditionally as the second equation in monotonous in x
x = fsolve(#(x) y^2-1413.7*x-1095.2*cos(x)+2169, 0)
Then once you know x, you can solve for z using the known inverse cosine
z = acos(0.20978-cos(x))
This may actually fail to give a result if cos(x) comes close to -1. One can artificially cut out that error, introducing a possibly wrong solution
z = acos(min(1,0.20978-cos(x)))
For simplicity, assemble these operations in a helper function
function [x,z] = solve_xz(y)
x = fsolve(#(x) y^2-1413.7*x-1095.2*cos(x)+2169, 0);
z = acos(min(1,0.20978-cos(x)));
end
Now use that to get the ODE for y
function dy = ode_y(t,y)
[x,z] = solve_xz(y(1));
dy = [ y(2); y(3); 6666.6667*(z-x)-333.3333*y(1)-33.3333*y(2)-5*y(3) ];
end
and apply the ODE solver of your choice. It is quite likely that the system is stiff, so ode45 might not be the best solver.

Efficient Method in MATLAB for Producing a Numerical Solution to an Ordinary Differential Equation

I am attempting to write a MATLAB program that allows me to give it a differential equation and then ultimately produce a numerical solution.
In particular, I am looking to solve this equation:
The steps involved to create such a program would be, as I see it:
1st: Discretizing the domain of the ODE into n-intervals of equivalent length
2nd: Replace the differential operators write finite difference operators.
3rd: Somehow get MATLAB to construct a system of linear equations that approximates the ODE
4th: Solve the system of linear algebraic equations with MATLAB
5th: Plot the results.
And, on that conceptual level, that all makes sense to me. Attempting to carry out the steps using code is what is proving difficult.
Thus far, I have the program split into two parts. The first one is my attempt at graphing the function, while the second part attempts to perform the integration.
First Part:
function [y] = ODEs (n,a, b)
x= 0:(1/n):1;
A= zeros(n+1,n+1);
A(1,1)= -2;
A(1,2)= 1;
A(n+1, n+1)= -2;
A(n+1, n)=1;
for i= 2:n;
A(i,i)=-2;
A(i,i-1)=1;
A(i,i-1)=1;
end
for i=1:n+1;
b(i,1)=(x(1,i)).* (1/n);
end
y=inv(A)*b;
plot (x,y)
hold all
plot (x,(x(:).^3./6) +(b-a-(1/6)).*x(:) +a)
Second Part:
clear all;
clc;
prompt='How many times do you want to integrate the function y=x: ';
y = input(prompt);
syms ('x');
i = 1;
j = 1;
b = 1;
den_num = 1;
while i <= y
while j <= y
den_num = j*den_num;
j = j+1;
end
b = x.^y /den_num;
i = i+1;
end
pretty(b)
At this point, both parts are riddled with errors (the 2nd part doesn't even provide a graph like I would like), but hopefully what I'm attempting to do is clear. I'm not looking for a solution to all my problems to be handed to me: I know that would prove immense. However, it would be nice to know if I'm heading in the right direction? Or is there a more efficient way of going about things that I'm missing? Hopefully this all makes some sense.

matlab differential equation

I have the following differential equation which I'm not able to solve.
We know the following about the equation:
D(r) is a third grade polynom
D'(1)=D'(2)=0
D(2)=2D(1)
u(1)=450
u'(2)=-K * (u(2)-Te)
Where K and Te are constants.
I want to approximate the problem using a matrix and I managed to solve
the similiar equation: with the same limit conditions for u(1) and u'(2).
On this equation I approximated u' and u'' with central differences and used a finite difference method between r=1 to r=2. I then placed the results in a matrix A in matlab and the limit conditions in the vector Y in matlab and ran u=A\Y to get how the u value changes. Heres my matlab code for the equation I managed to solve:
clear
a=1;
b=2;
N=100;
h = (b-a)/N;
K=3.20;
Ti=450;
Te=20;
A = zeros(N+2);
A(1,1)=1;
A(end,end)=1/(2*h*K);
A(end,end-1)=1;
A(end,end-2)=-1/(2*h*K);
r=a+h:h:b;
%y(i)
for i=1:1:length(r)
yi(i)=-r(i)*(2/(h^2));
end
A(2:end-1,2:end-1)=A(2:end-1,2:end-1)+diag(yi);
%y(i-1)
for i=1:1:length(r)-1
ymin(i)=r(i+1)*(1/(h^2))-1/(2*h);
end
A(3:end-1,2:end-2) = A(3:end-1,2:end-2)+diag(ymin);
%y(i+1)
for i=1:1:length(r)
ymax(i)=r(i)*(1/(h^2))+1/(2*h);
end
A(2:end-1,3:end)=A(2:end-1,3:end)+diag(ymax);
Y=zeros(N+2,1);
Y(1) =Ti;
Y(2)=-(Ti*(r(1)/(h^2)-(1/(2*h))));
Y(end) = Te;
r=[1,r];
u=A\Y;
plot(r,u(1:end-1));
My question is, how do I solve the first differential equation?
As TroyHaskin pointed out in comments, one can determine D up to a constant factor, and that constant factor cancels out in D'/D anyway. Put another way: we can assume that D(1)=1 (a convenient number), since D can be multiplied by any constant. Now it's easy to find the coefficients (done with Wolfram Alpha), and the polynomial turns out to be
D(r) = -2r^3+9r^2-12r+6
with derivative D'(r) = -6r^2+18r-12. (There is also a smarter way to find the polynomial by starting with D', which is quadratic with known roots.)
I would probably use this information right away, computing the coefficient k of the first derivative:
r = a+h:h:b;
k = 1+r.*(-6*r.^2+18*r-12)./(-2*r.^3+9*r.^2-12*r+6);
It seems that k is always positive on the interval [1,2], so if you want to minimize the changes to existing code, just replace r(i) by r(i)/k(i) in it.
By the way, instead of loops like
for i=1:1:length(r)
yi(i)=-r(i)*(2/(h^2));
end
one usually does simply
yi=-r*(2/(h^2));
This vectorization makes the code more compact and can benefit the performance too (not so much in your example, where solving the linear system is the bottleneck). Another benefit is that yi is properly initialized, while with your loop construction, if yi happened to already exist and have length greater than length(r), the resulting array would have extraneous entries. (This is a potential source of hard-to-track bugs.)

Matlab Finding the Zeros of a Symbolic Function

I have a symbolic function, whose zeros I am particular interested in knowing. I have searched through google, trying to find something related to my query, but was unsuccessful.
Could someone please help me?
EDIT:
T(x,t) = 72/((2*n+1)^2*pi^3)*(1 - (2*n+1)^2*pi^2*t/45 + (2*n+1)^4*pi^4*t^2/(2*45^2) - (2*n+1)^6*pi^6*t^3/(6*45^3))*(2*n+1)*pi*x/3;
for i=1:1:1000
T_new = 72/((2*i+1)^2*pi^3)*(1 - (2*i+1)^2*pi^2*t/45 + (2*i+1)^4*pi^4*t^2/(2*45^2) - (2*i+1)^6*pi^6*t^3/(6*45^3))*(2*i+1)*pi*x/3;
T = T + T_new;
end
T = T - 72/((2*n+1)^2*pi^3)*(1 - (2*n+1)^2*pi^2*t/45 + (2*n+1)^4*pi^4*t^2/(2*45^2) - (2*n+1)^6*pi^6*t^3/(6*45^3))*(2*n+1)*pi*x/3;
T = T(1.5,t);
T_EQ = 0.00001
S = solve(T - T_EQ == 0,t);
The problem that I get is that S is an a vector which contains imaginary numbers. I expected a real number, because I am trying to calculate a time.
Here is a little background as to what I am trying to do:
http://hans.math.upenn.edu/~deturck/m241/solving_the_heat_eqn.pdf
In the given link is the heat equation solved for a particular one-dimensional case. The temperature distribution, that satisfies the prescribed boundary and initial conditions, is given on page 50, I believe.
What I would like to do is find the time at which the one-dimensional object equilibrates with the environment, which is held at a constant temperature of T=0. As far as I know, the easiest way to do this would be to use the Taylor expansion of the exponential function, using only the first few terms, because I expect the equilibrium time to be relatively short; and then use the small angle approximation for the sine function, because the rod has a relatively small length. Doing just this, I made a for loop to generate terms just as the summation function would--as you can see, I used 1000 terms.
Does what I am doing seem wrong to anyone? If there is a better method, could someone please recommend it?
You shouldn't be surprised to see imaginary roots provided that at least one root is real and positive, corresponding to your time. The question is if the time makes any sense due to the approximations that you're making. Have you plotted the the actual function to get a rough approximation for where the zero is?
I can't really comment on the particular problem you're trying to solve. You need to make sure that you're using enough Taylor expansion terms an that they are accurate for the domain. Have you tried this leaving in the exp and/or sin? Is there any reason that you can't just use zero? And have you checked that your summation has converged after 1,000 terms? Or does it converge much sooner or not at all?
The main question is why are you using symbolic math at all to solve this? This seems like a numeric problem unless you're experiencing overflow/underflow issues in your summation. You can find the zero using fzero in this case:
N = 32; % Number of terms in summation
x = 1.5;
T_EQ = 1e-5;
n = (2*(0:N)+1)*pi;
T = #(t)sum((72./n.^3).*exp(-n.^2*t/45).*sin(n*x/3))-T_EQ;
S = fzero(T,[0 1e3]) % Bounds around a root guarantees solution if function monotonic
which returns
S =
56.333877640358708
If you're going to use solve, I'd do something like the following to avoid for loops:
syms t
N = 32;
x = 1.5;
T_EQ = 1e-5;
n = (2*sym(0:N)+1)*sym(pi);
T(t) = sum((72./n.^3).*exp(-n.^2*t/45).*sin(n*x/3));
S = double(solve(T-T_EQ==0,t))
or, using symsum:
syms n t
N = 32;
x = 1.5;
T_EQ = 1e-5;
T(t) = symsum((72/(pi*(2*n+1))^3)*exp(-(pi*(2*n+1))^2*t/45)*sin(pi*(2*n+1)*x/3),n,0,N);
S = double(solve(T-T_EQ==0,t))
Lastly, your symbolic solutions are not even exact as some your pi variables are being converted to rational approximations. pi is floating point. Things like pi*t are generally safe if t is symbolic, because pi will be recognized as such. However, pi^2 is calculated in floating-point before being converted to symbolic due to order of operations. In general your should use sym('pi') or sym(pi) in symbolic expressions.
Assuming you have a polynomial or trigonometric function of x or y, and what you mean by "zeros" is the values where the function crosses the axis, i.e., either x or y is zero, you can call the value of the function when a variable is 0. An example:
syms x y
f=-cos(x)*exp(-(x^2)/40);
ezsurf(f,[-10,10])
F=matlabFunction(f,'vars',{[x]});
F([0])
The ezsurf just visualizes the plot. If you want a function of both x and y, you do something like the following:
syms x y
f=-cos(x)*cos(y)*exp(-(x^2+y^2)/40);
ezsurf(f,[-10,10])
F=matlabFunction(f,'vars',{[x,y]});
for y=0
solve(f)
end
This will give you the value of the function for which integer multiples of x correspond to zero points for y (values of the function that are on the y=0 plane).

MATLAB Fitting Function

I am trying to fit a line to some data without using polyfit and polyval. I got some good help already on how to implement this and I have gotten it to work with a simple sin function. However, when applied to the function I am trying to fit, it does not work. Here is my code:
clear all
clc
lb=0.001; %lowerbound of data
ub=10; %upperbound of data
step=.1; %step-size through data
a=.03;
la=1482/120000; %1482 is speed of sound in water and 120kHz
ep1=.02;
ep2=.1;
x=lb:step:ub;
r_sq_des=0.90; %desired value of r^2 for the fit of data without noise present
i=1;
for x=lb:step:ub
G(i,1)= abs(sin((a/la)*pi*x*(sqrt(1+(1/x)^2)-1)));
N(i,1)=2*rand()-1;
Ghat(i,1)=(1+ep1*N(i,1))*G(i,1)+ep2*N(i,1);
r(i,1)=x;
i=i+1;
end
x=r;
y=G;
V=[x.^0];
Vfit=[x.^0];
for i=1:1:1000
V = [x.^i V];
c = V \ y;
Vfit = [x.^i Vfit];
yFit=Vfit*c;
plot(x,y,'o',x,yFit,'--')
drawnow
pause
end
The first two sections are just defining variables and the function. The second for loop is where I am making the fit. As you can see, I have it pause after every nth order in order to see the fit.
I changed your fit formula a bit, I got the same answers but quickly got
a warning that the matrix was singular. No sense in continuing past
the point that the inversion is singular.
Depending on what you are doing you can usually change out variables or change domains.
This doesn't do a lot better, but it seemed to help a little bit.
I increased the number of samples by a factor of 10 since the initial part of the curve
didn't look sampled highly enough.
I added a weighting variable but it is set to equal weight in the code below. Attempts
to deweight the tail didn't help as much as I hoped.
Probably not really a solution, but perhaps will help with a few more knobs/variables.
...
step=.01; %step-size through data
...
x=r;
y=G;
t=x.*sqrt(1+x.^(-2));
t=log(t);
V=[ t.^0];
w=ones(size(t));
for i=1:1:1000
% Trying to solve for value of c
% c that
% yhat = V*c approximates y
% or y = V*c
% V'*y = V'*V * c
% c = (V'*V) \ V'*y
V = [t.^i V];
c = (V'*diag(w.^2)*V ) \ (V'*diag(w.^2)*y) ;
yFit=V*c;
subplot(211)
plot(t,y,'o',t,yFit,'--')
subplot(212)
plot(x,y,'o',x,yFit,'--')
drawnow
pause
end
It looks like more of a frequency estimation problem, and trying to fit a unknown frequency
with polynomial tends to be touch and go. Replacing the polynomial basis with a quick
sin/cos basis didn't seem to do to bad.
V = [sin(t*i) cos(t*i) V];
Unless you specifically need a polynomial basis, you can apply your knowledge of the problem domain to find other potential basis functions for your fit, or to attempt to make the domain in which you are performing the fit more linear.
As dennis mentioned, a different set of basis functions might do better. However you can improve the polynomial fit with QR factorisation, rather than just \ to solve the matrix equation. It is a badly conditioned problem no matter what you do however, and using smooth basis functions wont allow you to accurately reproduce the sharp corners in the actual function.
clear all
close all
clc
lb=0.001; %lowerbound of data
ub=10; %upperbound of data
step=.1; %step-size through data
a=.03;
la=1482/120000; %1482 is speed of sound in water and 120kHz
ep1=.02;
ep2=.1;
x=logspace(log10(lb),log10(ub),100)';
r_sq_des=0.90; %desired value of r^2 for the fit of data without noise present
y=abs(sin(a/la*pi*x.*(sqrt(1+(1./x).^2)-1)));
N=2*rand(size(x))-1;
Ghat=(1+ep1*N).*y+ep2*N;
V=[x.^0];
xs=(lb:.01:ub)';
Vfit=[xs.^0];
for i=1:1:20%length(x)-1
V = [x.^i V];
Vfit = [xs.^i Vfit];
[Q,R]=qr(V,0);
c = R\(Q'*y);
yFit=Vfit*c;
plot(x,y,'o',xs,yFit)
axis([0 10 0 1])
drawnow
pause
end