I am trying to understand how fold and foldLeft and the respective reduce and reduceLeft work. I used fold and foldLeft as my example
scala> val r = List((ArrayBuffer(1, 2, 3, 4),10))
scala> r.foldLeft(ArrayBuffer(1,2,4,5))((x,y) => x -- y._1)
scala> res28: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(5)
scala> r.fold(ArrayBuffer(1,2,4,5))((x,y) => x -- y._1)
<console>:11: error: value _1 is not a member of Serializable with Equals
r.fold(ArrayBuffer(1,2,4,5))((x,y) => x -- y._1)
Why fold didn't work as foldLeft? What is Serializable with Equals? I understand fold and foldLeft has slight different API signature in terms of parameter generic types. Please advise. Thanks.
The method fold (originally added for parallel computation) is less powerful than foldLeft in terms of types it can be applied to. Its signature is:
def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
This means that the type over which the folding is done has to be a supertype of the collection element type.
def foldLeft[B](z: B)(op: (B, A) => B): B
The reason is that fold can be implemented in parallel, while foldLeft cannot. This is not only because of the *Left part which implies that foldLeft goes from left to right sequentially, but also because the operator op cannot combine results computed in parallel -- it only defines how to combine the aggregation type B with the element type A, but not how to combine two aggregations of type B. The fold method, in turn, does define this, because the aggregation type A1 has to be a supertype of the element type A, that is A1 >: A. This supertype relationship allows in the same time folding over the aggregation and elements, and combining aggregations -- both with a single operator.
But, this supertype relationship between the aggregation and the element type also means that the aggregation type A1 in your example should be the supertype of (ArrayBuffer[Int], Int). Since the zero element of your aggregation is ArrayBuffer(1, 2, 4, 5) of the type ArrayBuffer[Int], the aggregation type is inferred to be the supertype of both of these -- and that's Serializable with Equals, the only least upper bound of a tuple and an array buffer.
In general, if you want to allow parallel folding for arbitrary types (which is done out of order) you have to use the method aggregate which requires defining how two aggregations are combined. In your case:
r.aggregate(ArrayBuffer(1, 2, 4, 5))({ (x, y) => x -- y._1 }, (x, y) => x intersect y)
Btw, try writing your example with reduce/reduceLeft -- because of the supertype relationship between the element type and the aggregation type that both these methods have, you will find that it leads to a similar error as the one you've described.
In scala, how do I define addition over two Option arguments? Just to be specific, let's say they're wrappers for Int types (I'm actually working with maps of doubles but this example is simpler).
I tried the following but it just gives me an error:
def addOpt(a:Option[Int], b:Option[Int]) = {
a match {
case Some(x) => x.get
case None => 0
} + b match {
case Some(y) => y.get
case None => 0
}
}
Edited to add:
In my actual problem, I'm adding two maps which are standins for sparse vectors. So the None case returns Map[Int, Double] and the + is actually a ++ (with the tweak at stackoverflow.com/a/7080321/614684)
Monoids
You might find life becomes a lot easier when you realize that you can stand on the shoulders of giants and take advantage of common abstractions and the libraries built to use them. To this end, this question is basically about dealing with
monoids (see related questions below for more about this) and the library in question is called scalaz.
Using scalaz FP, this is just:
def add(a: Option[Int], b: Option[Int]) = ~(a |+| b)
What is more this works on any monoid M:
def add[M: Monoid](a: Option[M], b: Option[M]) = ~(a |+| b)
Even more usefully, it works on any number of them placed inside a Foldable container:
def add[M: Monoid, F: Foldable](as: F[Option[M]]) = ~as.asMA.sum
Note that some rather useful monoids, aside from the obvious Int, String, Boolean are:
Map[A, B: Monoid]
A => (B: Monoid)
Option[A: Monoid]
In fact, it's barely worth the bother of extracting your own method:
scala> some(some(some(1))) #:: some(some(some(2))) #:: Stream.empty
res0: scala.collection.immutable.Stream[Option[Option[Option[Int]]]] = Stream(Some(Some(Some(1))), ?)
scala> ~res0.asMA.sum
res1: Option[Option[Int]] = Some(Some(3))
Some related questions
Q. What is a monoid?
A monoid is a type M for which there exists an associative binary operation (M, M) => M and an identity I under this operation, such that mplus(m, I) == m == mplus(I, m) for all m of type M
Q. What is |+|?
This is just scalaz shorthand (or ASCII madness, ymmv) for the mplus binary operation
Q. What is ~?
It is a unary operator meaning "or identity" which is retrofitted (using scala's implicit conversions) by the scalaz library onto Option[M] if M is a monoid. Obviously a non-empty option returns its contents; an empty option is replaced by the monoid's identity.
Q. What is asMA.sum?
A Foldable is basically a datastructure which can be folded over (like foldLeft, for example). Recall that foldLeft takes a seed value and an operation to compose successive computations. In the case of summing a monoid, the seed value is the identity I and the operation is mplus. You can hence call asMA.sum on a Foldable[M : Monoid]. You might need to use asMA because of the name clash with the standard library's sum method.
Some References
Slides and Video of a talk I gave which gives practical examples of using monoids in the wild
def addOpts(xs: Option[Int]*) = xs.flatten.sum
This will work for any number of inputs.
If they both default to 0 you don't need pattern matching:
def addOpt(a:Option[Int], b:Option[Int]) = {
a.getOrElse(0) + b.getOrElse(0)
}
(Repeating comment above in an answer as requested)
You don't extract the content of the option the proper way. When you match with case Some(x), x is the value inside the option(type Int) and you don't call get on that. Just do
case Some(x) => x
Anyway, if you want content or default, a.getOrElse(0) is more convenient
def addOpt(ao: Option[Int], bo: Option[Int]) =
for {
a <- ao
b <- bo
} yield a + b
I have learned the basic difference between foldLeft and reduceLeft
foldLeft:
initial value has to be passed
reduceLeft:
takes first element of the collection as initial value
throws exception if collection is empty
Is there any other difference ?
Any specific reason to have two methods with similar functionality?
Few things to mention here, before giving the actual answer:
Your question doesn't have anything to do with left, it's rather about the difference between reducing and folding
The difference is not the implementation at all, just look at the signatures.
The question doesn't have anything to do with Scala in particular, it's rather about the two concepts of functional programming.
Back to your question:
Here is the signature of foldLeft (could also have been foldRight for the point I'm going to make):
def foldLeft [B] (z: B)(f: (B, A) => B): B
And here is the signature of reduceLeft (again the direction doesn't matter here)
def reduceLeft [B >: A] (f: (B, A) => B): B
These two look very similar and thus caused the confusion. reduceLeft is a special case of foldLeft (which by the way means that you sometimes can express the same thing by using either of them).
When you call reduceLeft say on a List[Int] it will literally reduce the whole list of integers into a single value, which is going to be of type Int (or a supertype of Int, hence [B >: A]).
When you call foldLeft say on a List[Int] it will fold the whole list (imagine rolling a piece of paper) into a single value, but this value doesn't have to be even related to Int (hence [B]).
Here is an example:
def listWithSum(numbers: List[Int]) = numbers.foldLeft((List.empty[Int], 0)) {
(resultingTuple, currentInteger) =>
(currentInteger :: resultingTuple._1, currentInteger + resultingTuple._2)
}
This method takes a List[Int] and returns a Tuple2[List[Int], Int] or (List[Int], Int). It calculates the sum and returns a tuple with a list of integers and it's sum. By the way the list is returned backwards, because we used foldLeft instead of foldRight.
Watch One Fold to rule them all for a more in depth explanation.
reduceLeft is just a convenience method. It is equivalent to
list.tail.foldLeft(list.head)(_)
foldLeft is more generic, you can use it to produce something completely different than what you originally put in. Whereas reduceLeft can only produce an end result of the same type or super type of the collection type. For example:
List(1,3,5).foldLeft(0) { _ + _ }
List(1,3,5).foldLeft(List[String]()) { (a, b) => b.toString :: a }
The foldLeft will apply the closure with the last folded result (first time using initial value) and the next value.
reduceLeft on the other hand will first combine two values from the list and apply those to the closure. Next it will combine the rest of the values with the cumulative result. See:
List(1,3,5).reduceLeft { (a, b) => println("a " + a + ", b " + b); a + b }
If the list is empty foldLeft can present the initial value as a legal result. reduceLeft on the other hand does not have a legal value if it can't find at least one value in the list.
For reference, reduceLeft will error if applied to an empty container with the following error.
java.lang.UnsupportedOperationException: empty.reduceLeft
Reworking the code to use
myList foldLeft(List[String]()) {(a,b) => a+b}
is one potential option. Another is to use the reduceLeftOption variant which returns an Option wrapped result.
myList reduceLeftOption {(a,b) => a+b} match {
case None => // handle no result as necessary
case Some(v) => println(v)
}
The basic reason they are both in Scala standard library is probably because they are both in Haskell standard library (called foldl and foldl1). If reduceLeft wasn't, it would quite often be defined as a convenience method in different projects.
From Functional Programming Principles in Scala (Martin Odersky):
The function reduceLeft is defined in terms of a more general function, foldLeft.
foldLeft is like reduceLeft but takes an accumulator z, as an additional parameter, which is returned when foldLeft is called on an empty list:
(List (x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ...) op x
[as opposed to reduceLeft, which throws an exception when called on an empty list.]
The course (see lecture 5.5) provides abstract definitions of these functions, which illustrates their differences, although they are very similar in their use of pattern matching and recursion.
abstract class List[T] { ...
def reduceLeft(op: (T,T)=>T) : T = this match{
case Nil => throw new Error("Nil.reduceLeft")
case x :: xs => (xs foldLeft x)(op)
}
def foldLeft[U](z: U)(op: (U,T)=>U): U = this match{
case Nil => z
case x :: xs => (xs foldLeft op(z, x))(op)
}
}
Note that foldLeft returns a value of type U, which is not necessarily the same type as List[T], but reduceLeft returns a value of the same type as the list).
To really understand what are you doing with fold/reduce,
check this: http://wiki.tcl.tk/17983
very good explanation. once you get the concept of fold,
reduce will come together with the answer above:
list.tail.foldLeft(list.head)(_)
Scala 2.13.3, Demo:
val names = List("Foo", "Bar")
println("ReduceLeft: "+ names.reduceLeft(_+_))
println("ReduceRight: "+ names.reduceRight(_+_))
println("Fold: "+ names.fold("Other")(_+_))
println("FoldLeft: "+ names.foldLeft("Other")(_+_))
println("FoldRight: "+ names.foldRight("Other")(_+_))
outputs:
ReduceLeft: FooBar
ReduceRight: FooBar
Fold: OtherFooBar
FoldLeft: OtherFooBar
FoldRight: FooBarOther
I have read that with a statically typed language like Scala or Haskell there is no way to create or provide a Lisp apply function:
(apply #'+ (list 1 2 3)) => 6
or maybe
(apply #'list '(list :foo 1 2 "bar")) => (:FOO 1 2 "bar")
(apply #'nth (list 1 '(1 2 3))) => 2
Is this a truth?
It is perfectly possible in a statically typed language. The whole java.lang.reflect thingy is about doing that. Of course, using reflection gives you as much type safety as you have with Lisp. On the other hand, while I do not know if there are statically typed languages supporting such feature, it seems to me it could be done.
Let me show how I figure Scala could be extended to support it. First, let's see a simpler example:
def apply[T, R](f: (T*) => R)(args: T*) = f(args: _*)
This is real Scala code, and it works, but it won't work for any function which receives arbitrary types. For one thing, the notation T* will return a Seq[T], which is a homegenously-typed sequence. However, there are heterogeneously-typed sequences, such as the HList.
So, first, let's try to use HList here:
def apply[T <: HList, R](f: (T) => R)(args: T) = f(args)
That's still working Scala, but we put a big restriction on f by saying it must receive an HList, instead of an arbitrary number of parameters. Let's say we use # to make the conversion from heterogeneous parameters to HList, the same way * converts from homogeneous parameters to Seq:
def apply[T, R](f: (T#) => R)(args: T#) = f(args: _#)
We aren't talking about real-life Scala anymore, but an hypothetical improvement to it. This looks reasonably to me, except that T is supposed to be one type by the type parameter notation. We could, perhaps, just extend it the same way:
def apply[T#, R](f: (T#) => R)(args: T#) = f(args: _#)
To me, it looks like that could work, though that may be naivety on my part.
Let's consider an alternate solution, one depending on unification of parameter lists and tuples. Let's say Scala had finally unified parameter list and tuples, and that all tuples were subclass to an abstract class Tuple. Then we could write this:
def apply[T <: Tuple, R](f: (T) => R)(args: T) = f(args)
There. Making an abstract class Tuple would be trivial, and the tuple/parameter list unification is not a far-fetched idea.
A full APPLY is difficult in a static language.
In Lisp APPLY applies a function to a list of arguments. Both the function and the list of arguments are arguments to APPLY.
APPLY can use any function. That means that this could be any result type and any argument types.
APPLY takes arbitrary arguments in arbitrary length (in Common Lisp the length is restricted by an implementation specific constant value) with arbitrary and possibly different types.
APPLY returns any type of value that is returned by the function it got as an argument.
How would one type check that without subverting a static type system?
Examples:
(apply #'+ '(1 1.4)) ; the result is a float.
(apply #'open (list "/tmp/foo" :direction :input))
; the result is an I/O stream
(apply #'open (list name :direction direction))
; the result is also an I/O stream
(apply some-function some-arguments)
; the result is whatever the function bound to some-function returns
(apply (read) (read))
; neither the actual function nor the arguments are known before runtime.
; READ can return anything
Interaction example:
CL-USER 49 > (apply (READ) (READ)) ; call APPLY
open ; enter the symbol OPEN
("/tmp/foo" :direction :input :if-does-not-exist :create) ; enter a list
#<STREAM::LATIN-1-FILE-STREAM /tmp/foo> ; the result
Now an example with the function REMOVE. We are going to remove the character a from a list of different things.
CL-USER 50 > (apply (READ) (READ))
remove
(#\a (1 "a" #\a 12.3 :foo))
(1 "a" 12.3 :FOO)
Note that you also can apply apply itself, since apply is a function.
CL-USER 56 > (apply #'apply '(+ (1 2 3)))
6
There is also a slight complication because the function APPLY takes an arbitrary number of arguments, where only the last argument needs to be a list:
CL-USER 57 > (apply #'open
"/tmp/foo1"
:direction
:input
'(:if-does-not-exist :create))
#<STREAM::LATIN-1-FILE-STREAM /tmp/foo1>
How to deal with that?
relax static type checking rules
restrict APPLY
One or both of above will have to be done in a typical statically type checked programming language. Neither will give you a fully statically checked and fully flexible APPLY.
The reason you can't do that in most statically typed languages is that they almost all choose to have a list type that is restricted to uniform lists. Typed Racket is an example for a language that can talk about lists that are not uniformly typed (eg, it has a Listof for uniform lists, and List for a list with a statically known length that can be non-uniform) -- but still it assigns a limited type (with uniform lists) for Racket's apply, since the real type is extremely difficult to encode.
It's trivial in Scala:
Welcome to Scala version 2.8.0.final ...
scala> val li1 = List(1, 2, 3)
li1: List[Int] = List(1, 2, 3)
scala> li1.reduceLeft(_ + _)
res1: Int = 6
OK, typeless:
scala> def m1(args: Any*): Any = args.length
m1: (args: Any*)Any
scala> val f1 = m1 _
f1: (Any*) => Any = <function1>
scala> def apply(f: (Any*) => Any, args: Any*) = f(args: _*)
apply: (f: (Any*) => Any,args: Any*)Any
scala> apply(f1, "we", "don't", "need", "no", "stinkin'", "types")
res0: Any = 6
Perhaps I mixed up funcall and apply, so:
scala> def funcall(f: (Any*) => Any, args: Any*) = f(args: _*)
funcall: (f: (Any*) => Any,args: Any*)Any
scala> def apply(f: (Any*) => Any, args: List[Any]) = f(args: _*)
apply: (f: (Any*) => Any,args: List[Any])Any
scala> apply(f1, List("we", "don't", "need", "no", "stinkin'", "types"))
res0: Any = 6
scala> funcall(f1, "we", "don't", "need", "no", "stinkin'", "types")
res1: Any = 6
It is possible to write apply in a statically-typed language, as long as functions are typed a particular way. In most languages, functions have individual parameters terminated either by a rejection (i.e. no variadic invocation), or a typed accept (i.e. variadic invocation possible, but only when all further parameters are of type T). Here's how you might model this in Scala:
trait TypeList[T]
case object Reject extends TypeList[Reject]
case class Accept[T](xs: List[T]) extends TypeList[Accept[T]]
case class Cons[T, U](head: T, tail: U) extends TypeList[Cons[T, U]]
Note that this doesn't enforce well-formedness (though type bounds do exist for that, I believe), but you get the idea. Then you have apply defined like this:
apply[T, U]: (TypeList[T], (T => U)) => U
Your functions, then, are defined in terms of type list things:
def f (x: Int, y: Int): Int = x + y
becomes:
def f (t: TypeList[Cons[Int, Cons[Int, Reject]]]): Int = t.head + t.tail.head
And variadic functions like this:
def sum (xs: Int*): Int = xs.foldLeft(0)(_ + _)
become this:
def sum (t: TypeList[Accept[Int]]): Int = t.xs.foldLeft(0)(_ + _)
The only problem with all of this is that in Scala (and in most other static languages), types aren't first-class enough to define the isomorphisms between any cons-style structure and a fixed-length tuple. Because most static languages don't represent functions in terms of recursive types, you don't have the flexibility to do things like this transparently. (Macros would change this, of course, as well as encouraging a reasonable representation of function types in the first place. However, using apply negatively impacts performance for obvious reasons.)
In Haskell, there is no datatype for multi-types lists, although I believe, that you can hack something like this together whith the mysterious Typeable typeclass. As I see, you're looking for a function, which takes a function, a which contains exactly the same amount of values as needed by the function and returns the result.
For me, this looks very familiar to haskells uncurryfunction, just that it takes a tuple instead of a list. The difference is, that a tuple has always the same count of elements (so (1,2) and (1,2,3) are of different types (!)) and there contents can be arbitrary typed.
The uncurry function has this definition:
uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f (a,b) = f a b
What you need is some kind of uncurry which is overloaded in a way to provide an arbitrary number of params. I think of something like this:
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
class MyApply f t r where
myApply :: f -> t -> r
instance MyApply (a -> b -> c) (a,b) c where
myApply f (a,b) = f a b
instance MyApply (a -> b -> c -> d) (a,b,c) d where
myApply f (a,b,c) = f a b c
-- and so on
But this only works, if ALL types involved are known to the compiler. Sadly, adding a fundep causes the compiler to refuse compilation. As I'm not a haskell guru, maybe domeone else knows, howto fix this. Sadly, I don't know how to archieve this easier.
RĂ©sumee: apply is not very easy in Haskell, although possible. I guess, you'll never need it.
Edit I have a better idea now, give me ten minutes and I present you something whithout these problems.
try folds. they're probably similar to what you want. just write a special case of it.
haskell: foldr1 (+) [0..3] => 6
incidentally, foldr1 is functionally equivalent to foldr with the accumulator initialized as the element of the list.
there are all sorts of folds. they all technically do the same thing, though in different ways, and might do their arguments in different orders. foldr is just one of the simpler ones.
On this page, I read that "Apply is just like funcall, except that its final argument should be a list; the elements of that list are treated as if they were additional arguments to a funcall."
In Scala, functions can have varargs (variadic arguments), like the newer versions of Java. You can convert a list (or any Iterable object) into more vararg parameters using the notation :_* Example:
//The asterisk after the type signifies variadic arguments
def someFunctionWithVarargs(varargs: Int*) = //blah blah blah...
val list = List(1, 2, 3, 4)
someFunctionWithVarargs(list:_*)
//equivalent to
someFunctionWithVarargs(1, 2, 3, 4)
In fact, even Java can do this. Java varargs can be passed either as a sequence of arguments or as an array. All you'd have to do is convert your Java List to an array to do the same thing.
The benefit of a static language is that it would prevent you to apply a function to the arguments of incorrect types, so I think it's natural that it would be harder to do.
Given a list of arguments and a function, in Scala, a tuple would best capture the data since it can store values of different types. With that in mind tupled has some resemblance to apply:
scala> val args = (1, "a")
args: (Int, java.lang.String) = (1,a)
scala> val f = (i:Int, s:String) => s + i
f: (Int, String) => java.lang.String = <function2>
scala> f.tupled(args)
res0: java.lang.String = a1
For function of one argument, there is actually apply:
scala> val g = (i:Int) => i + 1
g: (Int) => Int = <function1>
scala> g.apply(2)
res11: Int = 3
I think if you think as apply as the mechanism to apply a first class function to its arguments, then the concept is there in Scala. But I suspect that apply in lisp is more powerful.
For Haskell, to do it dynamically, see Data.Dynamic, and dynApp in particular: http://www.haskell.org/ghc/docs/6.12.1/html/libraries/base/Data-Dynamic.html
See his dynamic thing for haskell, in C, void function pointers can be casted to other types, but you'd have to specify the type to cast it to. (I think, haven't done function pointers in a while)
A list in Haskell can only store values of one type, so you couldn't do funny stuff like (apply substring ["Foo",2,3]). Neither does Haskell have variadic functions, so (+) can only ever take two arguments.
There is a $ function in Haskell:
($) :: (a -> b) -> a -> b
f $ x = f x
But that's only really useful because it has very low precedence, or as passing around HOFs.
I imagine you might be able to do something like this using tuple types and fundeps though?
class Apply f tt vt | f -> tt, f -> vt where
apply :: f -> tt -> vt
instance Apply (a -> r) a r where
apply f t = f t
instance Apply (a1 -> a2 -> r) (a1,a2) r where
apply f (t1,t2) = f t1 t2
instance Apply (a1 -> a2 -> a3 -> r) (a1,a2,a3) r where
apply f (t1,t2,t3) = f t1 t2 t3
I guess that's a sort of 'uncurryN', isn't it?
Edit: this doesn't actually compile; superseded by #FUZxxl's answer.