How to handle recurring short-lived tasks with Kubernetes - kubernetes

I have a setup with a webserver (NGINX) and a react-based frontend that uses webpack to build the final static sources.
The webserver has its own kubernetes deployment + service.
The frontend needs to be build before the webserver can serve the static html/js/css files - but after that, the pod/container can stop.
My idea was to share a volume between the webserver and the frontend pod. The frontend will write the generated files to the volume and the webserver can serve them from there. Whenever there is an update to the frontend sourcecode, the files need to be regenerated.
What is the best way to accomplish that using kubernetes tools?
Right now, I'm using a init-container to build - but this leads to a restart of the webserver pod as well, which wouldn't be neccessary.
Is this the best/only solution to this problem or should I use kubernetes' jobs for this kind of tasks?

There are multiple ways to do this. Here's how I think about this:
Option 1: The static files represent built source code
In this case, the static files that you want to serve should actually be packaged and built into the docker image of your nginx webserver (in the html directory say). When you want to update your frontend, you update the version of the image used and update the pod.
Option 2: The static files represent state
In this case, your approach is correct. Your 'state' (like a database) is stored in a folder. You then run an init container/job to initialise 'state' and then your webserver pod works fine.
I believe option 1 to be better for 2 reasons:
You can horizontally scale your webserver trivially by increasing the pod replica number. In option 2, you're actually dealing with state so that's a problem when you want to add more nodes to your underlying k8s cluster (you'll have to copy files/folders from one volume/folder to another).
The static files are actually the source code of your app. These are not uploaded media files or similar. In this case, it absolutely makes sense to make them a part of your docker image. Otherwise, it kind of defeats that advantage of containerising and deploying.

Jobs, Init containers, or alternatively a gitRepo type of Volume would work for you.
http://kubernetes.io/docs/user-guide/volumes/#gitrepo
It is not clear in your question why you want to update the static content without simply re-deploying / updating the Pod.
Since somewhere, somehow, you have to build the webserver Docker image, it seems best to build the static content into the image: no moving parts once deployed, no need for volumes or storage. Overall it is simpler.
If you use any kind of automation tool for Docker builds, it's easy.
I personally use Jenkins to build Docker images based on a hook from git repo, and the image is simply rebuilt and deployed whenever the code changes.
Running a Job or Init container doesn't gain you much: sure the web server keeps running, but it's as easy to have a Deployment with rolling updates which will deploy the new Pod before the old one is torn down and you server will always be up too.
Keep it simple...

Related

How to reduce downtime caused by pulling images in the Kubernetes Recreate deployment strategy

Assuming I have a Kubernetes Deployment object with the Recreate strategy and I update the Deployment with a new container image version. Kubernetes will:
scale down/kill the existing Pods of the Deployment,
create the new Pods,
which will pull the new container images
so the new containers can finally run.
Of course, the Recreate strategy is exepected to cause a downtime between steps 1 and 4, where no Pod is actually running. However, step 3 can take a lot of time if the container images in question are or the container registry connection is slow, or both. In a test setup (Azure Kubernetes Services pulling a Windows container image from Docker Hub), I see it taking 5 minutes and more, which makes for a really long downtime.
So, what is a good option to reduce that downtime? Can I somehow get Kubernetes to pull the new images before killing the Pods in step 1 above? (Note that the solution should work with Windows containers, which are notoriously large, in case that is relevant.)
On the Internet, I have found this Codefresh article using a DaemonSet and Docker in Docker, but I guess Docker in Docker is no longer compatible with containerd.
I've also found this StackOverflow answer that suggests using an Azure Container Registry with Project Teleport, but that is in private preview and doesn't support Windows containers yet. Also, it's specific to Azure Kubernetes Services, and I'm looking for a more general solution.
Surely, this is a common problem that has a "standard" answer?
Update 2021-12-21: Because I've got a corresponding answer, I'll clarify that I cannot easily change the deployment strategy. The application in question does not support running Pods of different versions at the same time because it uses a database that needs to be migrated to the corresponding application version, without forwards or backwards compatibility.
Implement a "blue-green" deployment strategy. For instance, the service might be running and active in the "blue" state. A new deployment is created with a new container image, which deploys the "green" pods with the new container image. When all of the "green" pods are ready, the "switch live" step is run, which switches the active color. Very little downtime.
Obviously, this has tradeoffs. Your cluster will need more memory to run the additional transitional pods. The deployment process will be more complex.
Via https://www.reddit.com/r/kubernetes/comments/oeruh9/can_kubernetes_prepull_and_cache_images/, I've found these ideas:
Implement a DaemonSet that runs a "sleep" loop on all the images I need.
Use http://github.com/mattmoor/warm-image, which has no Windows support.
Use https://github.com/ContainerSolutions/ImageWolf, which says, "ImageWolf is currently alpha software and intended as a PoC - please don't run it in production!"
Use https://github.com/uber/kraken, which seems to be a registry, not a pre-pulling solution.
Use https://github.com/dragonflyoss/Dragonfly (now https://github.com/dragonflyoss/Dragonfly2), which also seems to do somethings completely different.
Use https://github.com/senthilrch/kube-fledged, which looks exactly right and more mature than the others, but has no Windows support.
Use https://github.com/dcherman/image-cache-daemon, which has no Windows support.
Use https://goharbor.io/blog/harbor-2.1/, which also seems to be a registry, not a pre-pulling solution.
Use https://openkruise.io/docs/user-manuals/imagepulljob/, which also looks right, but a) OpenKruise is huge and I'm not sure I want to install this just to preload images, and b) it seems it has no Windows support.
So, it seems I have to implement this on my own, with a DaemonSet. I still hope someone can provide a better answer than this one 🙂 .

Can a ReplicaSet be configured to allow in progress updates to complete?

I currently have a kubernetes setup where we are running a decoupled drupal/gatsby app. The drupal acts as a content repository that gatsby pulls from when building. Drupal is also configured through a custom module to connect to the k8s api and patch the deployment gatsby runs under. Gatsby doesn't run persistently, instead this deployment uses gatsby as an init container to build the site so that it can then be served by a nginx container. By patching the deployment(modifying a label) a new replicaset is created which forces a new gatsby build, ultimately replacing the old build.
This seems to work well and I'm reasonably happy with it except for one aspect. There is currently an issue with the default scaling behaviour of replica sets when it comes to multiple subsequent content edits. When you make a subsequent content edit within drupal it will still contact the k8s api and patch the deployment. This results in a new replicaset being created, the original replicaset being left as is, the previous replicaset being scaled down and any pods that are currently being created(gatsby building) are killed. I can see why this is probably desirable in most situations but for me this increases the amount of time that it takes for you to be able to see these changes on the site. If multiple people are using drupal at the same time making edits this will be compounded and could become problematic.
Ideally I would like the containers that are currently building to be able to complete and for those replicasets to finish scaling up, queuing another replicaset to be created once this is completed. This would allow any updates in the first build to be deployed asap, whilst queueing up another build immediately after to include any subsequent content, and this could continue for as long as the load is there to require it and no longer. Is there any way to accomplish this?
It is the regular behavior of Kubernetes. When you update a Deployment it creates new ReplicaSet and respectively a Pod according to new settings. Kubernetes keeps some old ReplicatSets in case of possible roll-backs.
If I understand your question correctly. You cannot change this behavior, so you need to do something with architecture of your application.

Copying directories into minikube and persisting them

I am trying to copy some directories into the minikube VM to be used by some of the pods that are running. These include API credential files and template files used at run time by the application. I have found you can copy files using scp into the /home/docker/ directory, however these files are not persisted over reboots of the VM. I have read files/directories are persisted if stored in the /data/ directory on the VM (among others) however I get permission denied when trying to copy files to these directories.
Are there:
A: Any directories in minikube that will persist data that aren't protected in this way
B: Any other ways of doing the above without running into this issue (could well be going about this the wrong way)
To clarify, I have already been able to mount the files from /home/docker/ into the pods using volumes, so it's just the persisting data I'm unclear about.
Kubernetes has dedicated object types for these sorts of things. API credential files you might store in a Secret, and template files (if they aren't already built into your Docker image) could go into a ConfigMap. Both of them can either get translated to environment variables or mounted as artificial volumes in running containers.
In my experience, trying to store data directly on a node isn't a good practice. It's common enough to have multiple nodes, to not directly have login access to those nodes, and for them to be created and destroyed outside of your direct control (imagine an autoscaler running on a cloud provider that creates a new node when all of the existing nodes are 90% scheduled). There's a good chance your data won't (or can't) be on the host where you expect it.
This does lead to a proliferation of Kubernetes objects and associated resources, and you might find a Helm chart to be a good resource to tie them together. You can check the chart into source control along with your application, and deploy the whole thing in one shot. While it has a couple of useful features beyond just packaging resources together (a deploy-time configuration system, a templating language for the Kubernetes YAML itself) you can ignore these if you don't need them and just write a bunch of YAML files and a small control file.
For minikube, data kept in $HOME/.minikube/files directory is copied to / directory in VM host by minikube.

How to use Docker in the development/deployment workflow?

I'm not sure I completely understand the role of Docker in the process of development and deployment.
Say, I create a Dockerfile with nginx, some database and something else which creates a container and runs fine.
I drop it somewhere in the cloud and execute it to install and configure all the dependencies and environment settings.
Next, I have a repository with a web application which I want to run inside the container I created and deployed in the first 2 steps. I regularly work on it and push the changes.
Now, how do I integrate the web application into the container?
Do I put it as a dependency inside the Dockerfile I create in the 1st step and recreate the container each time from scratch?
Or, do I deploy the container once but have procedures inside Dockerfile that install utils that pull the code from repo by command or via hooks?
What if a container is running but I want to change some settings of, say, nginx? Do I add these changes into Dockerfile and recreate the image?
In general, what's the role of Docker in the daily app development routine? Is it used often if the infrastructure is running fine and only code is changing?
I think there is no singl "use only this" answer - as you already outlined, there are different viable concepts available.
Deployment to staging/production/pre-production
a)
Do I put it as a dependency inside the Dockerfile I create in the 1st step and recreate the container each time from scratch?
This is for sure the most docker`ish way and aligns fully with he docker-philosophy. It is highly portable, reproducible and suites anything, from one container to "swarm" thousands of. E.g. this concept has no issue suddenly scaling horizontally when you need more containers, lets say due to heavy traffic / load.
It also aligns with the idea that only the configuration/data should be dynamic in a docker container, not code / binaries /artifacts
This strategy should be chosen for production use, so when not as frequent deployments happen. If you care about downtimes during container-rebuilds (on upgrade), there are good concepts to deal with that too.
We use this for production and pre-production intances.
b)
Or, do I deploy the container once but have procedures inside
Dockerfile that install utils that pull the code from repo by command
or via hooks?
This is a more common practice for very frequent deployment. You can go the pull ( what you said ) or the push (docker cp / ssh scp) concept, while i guess the latter is preferred in this kind of environment.
We use this for any kind strategy for staging instances, which basically should reflect the current "codebase" and its status. We also use this for smoke-tests and CI, but depending on the application. If the app actually changes its dependencies a lot and a clean build requires a rebuild with those to really ensure stuff is tested as it is supposed to, we actually rebuild the image during CI.
Configuration management
1.
What if a container is running but I want to change some settings of,
say, nginx? Do I add these changes into Dockerfile and recreate the
image?
I am not using this as c) since this is configuration management, not applications deployment and the answer to this can be very complicated, depending on your case. In general, if redeployment needs configuration changes, it depends on your configuration management, if you can go with b) or always have to go a).
E.g. if you use https://github.com/markround/tiller with consul as the backend, you can push the configuration changes into consul, regenerating the configuration with tiller, while using consul watch -prefix /configuration tiller as a watch-task to react on those value changes.
This enables you to go b) and fix the configuration
You can also use https://github.com/markround/tiller and on deployment, e.g. change ENV vars or some kind of yml file ( tiller supports different backends ), and call tiller during deployment yourself. This most probably needs you to have ssh or you ssh on the host and use docker cp and docker exec
Development
In development, you generally reuse your docker-compose.yml file you use for production, but overload it with docker-compose-dev.yml to e.g. mount your code-folder, set RAILS_ENV=development, reconfigurat / mount some other configurations like xdebug or more verbose nginx loggin, whatever you need. You can also add some fake MTA-services like fermata and so on
docker-compose -f docker-compose.yml -f docker-compose-dev.yml up
docker-compose-dev.yml only overloads some values, it does not redefine it or duplicate it.
Depending on how powerful your configuration management is, you can also do a pre-installation during development stack up.
We actually use scaffolding for that, we use https://github.com/xeger/docker-compose and after running it, we use docker exec and docker cp to preinstall a instance or stage something. Some examples are here https://github.com/EugenMayer/docker-sync/wiki/7.-Scripting-with-docker-sync
If you are developing under OSX and you face performance issues due to OSXFS / code shares, you probably want to have a look at http://docker-sync.io ( i am biased though )

How to implement the "One Binary" principle with Docker

The One Binary principle explained here:
http://programmer.97things.oreilly.com/wiki/index.php/One_Binary states that one should...
"Build a single binary that you can identify and promote through all the stages in the release pipeline. Hold environment-specific details in the environment. This could mean, for example, keeping them in the component container, in a known file, or in the path."
I see many dev-ops engineers arguably violate this principle by creating one docker image per environment (ie, my-app-qa, my-app-prod and so on). I know that Docker favours immutable infrastructure which implies not changing an image after deployment, therefore not uploading or downloading configuration post deployment. Is there a trade-off between immutable infrastructure and the one binary principle or can they complement each-other? When it comes to separating configuration from code what is the best practice in a Docker world??? Which one of the following approaches should one take...
1) Creating a base binary image and then having a configuration Dockerfile that augments this image by adding environment specific configuration. (i.e my-app -> my-app-prod)
2) Deploying a binary-only docker image to the container and passing in the configuration through environment variables and so on at deploy time.
3) Uploading the configuration after deploying the Docker file to a container
4) Downloading configuration from a configuration management server from the running docker image inside the container.
5) Keeping the configuration in the host environment and making it available to the running Docker instance through a bind mount.
Is there another better approach not mentioned above?
How can one enforce the one binary principle using immutable infrastructure? Can it be done or is there a trade-off? What is the best practice??
I've about 2 years of experience deploying Docker containers now, so I'm going to talk about what I've done and/or know to work.
So, let me first begin by saying that containers should definitely be immutable (I even mark mine as read-only).
Main approaches:
use configuration files by setting a static entrypoint and overriding the configuration file location by overriding the container startup command - that's less flexible, since one would have to commit the change and redeploy in order to enable it; not fit for passwords, secure tokens, etc
use configuration files by overriding their location with an environment variable - again, depends on having the configuration files prepped in advance; ; not fit for passwords, secure tokens, etc
use environment variables - that might need a change in the deployment code, thus lessening the time to get the config change live, since it doesn't need to go through the application build phase (in most cases), deploying such a change might be pretty easy. Here's an example - if deploying a containerised application to Marathon, changing an environment variable could potentially just start a new container from the last used container image (potentially on the same host even), which means that this could be done in mere seconds; not fit for passwords, secure tokens, etc, and especially so in Docker
store the configuration in a k/v store like Consul, make the application aware of that and let it be even dynamically reconfigurable. Great approach for launching features simultaneously - possibly even accross multiple services; if implemented with a solution such as HashiCorp Vault provides secure storage for sensitive information, you could even have ephemeral secrets (an example would be the PostgreSQL secret backend for Vault - https://www.vaultproject.io/docs/secrets/postgresql/index.html)
have an application or script create the configuration files before starting the main application - store the configuration in a k/v store like Consul, use something like consul-template in order to populate the app config; a bit more secure - since you're not carrying everything over through the whole pipeline as code
have an application or script populate the environment variables before starting the main application - an example for that would be envconsul; not fit for sensitive information - someone with access to the Docker API (either through the TCP or UNIX socket) would be able to read those
I've even had a situation in which we were populating variables into AWS' instance user_data and injecting them into container on startup (with a script that modifies containers' json config on startup)
The main things that I'd take into consideration:
what are the variables that I'm exposing and when and where am I getting their values from (could be the CD software, or something else) - for example you could publish the AWS RDS endpoint and credentials to instance's user_data, potentially even EC2 tags with some IAM instance profile magic
how many variables do we have to manage and how often do we change some of them - if we have a handful, we could probably just go with environment variables, or use environment variables for the most commonly changed ones and variables stored in a file for those that we change less often
and how fast do we want to see them changed - if it's a file, it typically takes more time to deploy it to production; if we're using environment variable
s, we can usually deploy those changes much faster
how do we protect some of them - where do we inject them and how - for example Ansible Vault, HashiCorp Vault, keeping them in a separate repo, etc
how do we deploy - that could be a JSON config file sent to an deployment framework endpoint, Ansible, etc
what's the environment that we're having - is it realistic to have something like Consul as a config data store (Consul has 2 different kinds of agents - client and server)
I tend to prefer the most complex case of having them stored in a central place (k/v store, database) and have them changed dynamically, because I've encountered the following cases:
slow deployment pipelines - which makes it really slow to change a config file and have it deployed
having too many environment variables - this could really grow out of hand
having to turn on a feature flag across the whole fleet (consisting of tens of services) at once
an environment in which there is real strive to increase security by better handling sensitive config data
I've probably missed something, but I guess that should be enough of a trigger to think about what would be best for your environment
How I've done it in the past is to incorporate tokenization into the packaging process after a build is executed. These tokens can be managed in an orchestration layer that sits on top to manage your platform tools. So for a given token, there is a matching regex or xpath expression. That token is linked to one or many config files, depending on the relationship that is chosen. Then, when this build is deployed to a container, a platform service (i.e. config mgmt) will poke these tokens with the correct value with respect to its environment. These poke values most likely would be pulled from a vault.