Stuck on a simple proof about regular expressions - coq

I'm trying to formalize some properties on regular expressions (REs) using Coq. But, I've got some troubles to prove a rather simple property:
For all strings s, if s is in the language of (epsilon)* RE, then s =
"", where epsilon and * denotes the empty string RE and Kleene star
operation.
This seems to be an obvious application of induction / inversion tactics, but I couldn't make it work.
The minimal working code with the problematic lemma is in the following gist.
Any tip on how should I proceed will be appreciated.
EDIT:
One of my tries was something like:
Lemma star_lemma : forall s, s <<- (#1 ^*) -> s = "".
Proof.
intros s H.
inverts* H.
inverts* H2.
inverts* H1.
inverts* H1.
inverts* H2.
simpl in *.
-- stuck here
that leave me with the following goal:
s' : string
H4 : s' <<- (#1 ^*)
============================
s' = ""
At least to me, it appears that using induction would finish the proof, since I could use H4 in induction hypothesis to finish the proof, but when I start the proof using
induction H
instead of
inverts* H
I got some (at least for me) senseless goals. In Idris / Agda, such proof just follows by pattern matching and recursion over the structure of s <<- (#1 ^*). My point is how to do such recursion in Coq.

Here is one possible solution of the original problem:
Lemma star_lemma : forall s,
s <<- (#1 ^*) -> s = "".
Proof.
refine (fix star_lemma s prf {struct prf} : s = "" := _).
inversion_clear prf; subst.
inversion_clear H; subst.
- now inversion H0.
- inversion_clear H0; subst. inversion_clear H; subst.
rewrite (star_lemma s' H1).
reflexivity.
Qed.
The main idea is to introduce a term in the context which will resemble the recursive call in a typical Idris proof. The approaches with remember and dependent induction don't work well (without modifications of in_regex) because they introduce impossible to satisfy equations as induction hypotheses' premises.
Note: it can take a while to check this lemma (around 40 seconds on my machine under Coq 8.5pl3). I think it's due to the fact that the inversion tactic tends to generate big proof terms.

This problem has obsessed me for a week, and I have finally found a solution that I find elegant.
I had already read that when an induction principle does not fit your needs, you can write and prove another one, more adapted to your problem. That is what I have done in this case. What we would want is the one obtained when using the more natural definition given in this answer. By doing this, we can keep the same definition (if changing it implies too many changes, for example) and reason about it more easily.
Here is the proof of the induction principle (I use a section to specify precisely the implicit arguments, since otherwise I observe strange behaviours with them, but the section mechanism is not necessary at all here).
Section induction_principle.
Context (P : string -> regex -> Prop)
(H_InEps : P "" #1)
(H_InChr : forall c, P (String c "") ($ c))
(H_InCat : forall {e e' s s' s1}, s <<- e -> P s e -> s' <<- e' ->
P s' e' -> s1 = s ++ s' -> P s1 (e # e'))
(H_InLeft : forall {s e e'}, s <<- e -> P s e -> P s (e :+: e'))
(H_InRight : forall {s' e e'}, s' <<- e' -> P s' e' -> P s' (e :+: e'))
(H_InStar_Eps : forall e, P "" (e ^*))
(H_InStar_Cat : forall {s1 s2 e}, s1 <<- e -> s2 <<- (e ^*) ->
P s1 e -> P s2 (e ^*) -> P (s1++s2) (e ^*)).
Arguments H_InCat {_ _ _ _ _} _ _ _ _ _.
Arguments H_InLeft {_ _ _} _ _.
Arguments H_InRight {_ _ _} _ _.
Arguments H_InStar_Cat {_ _ _} _ _ _ _.
Definition in_regex_ind2 : forall (s : string) (r : regex), s <<- r -> P s r.
Proof.
refine (fix in_regex_ind2 {s r} prf {struct prf} : P s r :=
match prf with
| InEps => H_InEps
| InChr c => H_InChr c
| InCat prf1 prf2 eq1 =>
H_InCat prf1 (in_regex_ind2 prf1) prf2 (in_regex_ind2 prf2) eq1
| InLeft _ prf => H_InLeft prf (in_regex_ind2 prf)
| InRight _ prf => H_InRight prf (in_regex_ind2 prf)
| InStar prf => _
end).
inversion prf; subst.
- inversion H1. apply H_InStar_Eps.
- inversion H1; subst.
apply H_InStar_Cat; try assumption; apply in_regex_ind2; assumption.
Qed.
End induction_principle.
And it turned out that the Qed of this proof was not instantaneous (probably due to inversion producing large terms as in this answer), but took less than 1s (maybe because the lemma is more abstract).
The star_lemma becomes nearly trivial to prove (as soon as we know the remember trick), as with the natural definition.
Lemma star_lemma : forall s, s <<- (#1 ^*) -> s = "".
Proof.
intros s H. remember (#1 ^*) as r.
induction H using in_regex_ind2; try discriminate.
- reflexivity.
- inversion Heqr; subst.
inversion H. rewrite IHin_regex2 by reflexivity. reflexivity.
Qed.

I modified a bit the definition of your in_regex predicate:
Inductive in_regex : string -> regex -> Prop :=
| InEps
: "" <<- #1
| InChr
: forall c
, (String c EmptyString) <<- ($ c)
| InCat
: forall e e' s s' s1
, s <<- e
-> s' <<- e'
-> s1 = s ++ s'
-> s1 <<- (e # e')
| InLeft
: forall s e e'
, s <<- e
-> s <<- (e :+: e')
| InRight
: forall s' e e'
, s' <<- e'
-> s' <<- (e :+: e')
| InStarLeft
: forall e
, "" <<- (e ^*)
| InStarRight
: forall s s' e
, s <<- e
-> s' <<- (e ^*)
-> (s ++ s') <<- (e ^*)
where "s '<<-' e" := (in_regex s e).
and could prove your lemma:
Lemma star_lemma : forall s, s <<- (#1 ^*) -> s = "".
Proof.
intros s H.
remember (#1 ^*) as r.
induction H; inversion Heqr; clear Heqr; trivial.
subst e.
rewrite IHin_regex2; trivial.
inversion H; trivial.
Qed.
Some explanations are necessary.
I did an induction on H. The reasoning is: if I have a proof of s <<- (#1 ^*) then this proof must have the following form...
The tactic remember create a new hypothesis Heqr which, combined with inversion will help get rid of cases which cannot possibly give this proof (in fact all the cases minus the ones where ^* is in the conclusion).
Unfortunately, this path of reasoning does not work with the definition you had for the in_regex predicate because it will create an unsatisfiable condition to the induction hypothesis. That's why I modified your inductive predicate as well.
The modified inductive tries to give a more basic definition of being in (e ^*). Semantically, I think this is equivalent.
I would be interested to read a proof on the original problem.

Related

Coq's proof #Coq

I try to solve this proof but I don't find how to it.
I have two subgoals but I don't even know if it's correct.
Here the lemma that I trid to solve with this but I'm stuck :
2 subgoals
a, b : Nat
H : Equal (leB a b) True
______________________________________(1/2)
Equal match b with
| Z => False
| S m' => leB a m'
end (leB a b) / Equal (leB b (S a)) (leB a b)
______________________________________(2/2)
Equal (leB (S a) b) True / Equal (leB b (S a)) True
Inductive Bool : Type :=
True : Bool | False : Bool.
Definition Not(b : Bool) : Bool :=
Bool_rect (fun a => Bool)
False
True
b.
Lemma classic : forall b : Bool, Equal b (Not (Not b)).
Proof.
intro.
induction b.
simpl.
apply refl.
simpl.
apply refl.
Qed.
Definition Equal(T : Type)(x y : T) : Prop :=
forall P : T -> Prop, (P x) -> (P y).
Arguments Equal[T].
(* Avec certaines versions Arguments Equal[T] *)
Lemma refl : forall T : Type, forall x : T, Equal x x.
Proof.
intros.
unfold Equal.
intros.
assumption.
Qed.
Fixpoint leB n m : Bool :=
match n, m with
| Z, _ => True
| _, Z => False
| S n', S m' => leB n' m'
end.
First, don't introduce all variables in the beginning with intros. You will get a too weak induction hypothesis. Just introduce a.
Then in each branch, consider the different cases of b with the destruct tactic. It will simplify your goal and you can see if it is the left or the right side of goal that is true, and use your refl lemma to finish the goal.
The last case require that you use your induction hypothesis, and it is here that it is important that it holds for all b, not just one specific b.
Also, you didn't provide a definition for you Nat type, I guess it is something like this:
Inductive Nat := Z | S (n:Nat).
Here is a proof.
Lemma Linear : forall a b, (Equal (leB a b) True) \/ (Equal (leB b a) True).
Proof.
induction a.
- intros b. destruct b; simpl.
+ left. apply refl.
+ left. apply refl.
- intros b. destruct b; simpl.
+ right. apply refl.
+ destruct (IHa b) as [Hleft | Hright].
++ left. apply Hleft.
++ right. apply Hright.
Qed.
While it may not be as insightful, you can also use tactics that try these steps to get a shorter proof.
induction a; destruct b; firstorder.
will also prove your lemma.

Is there any thing like apply lem in *?

Is there any way to call apply lem in H for every possible H in premises, like rewrite lem in *?
Axiom P Q : nat -> Prop.
Axiom lem : forall (n : nat), P n -> Q n.
Goal P O -> P (S O) -> True.
intros. apply lem in H. apply lem in H0.
I couldn't find anything built in, but it's possible to write such a tactic with Ltac.
First, the special case.
Axiom P Q : nat -> Prop.
Axiom lem : forall (n : nat), P n -> Q n.
Goal P O -> P (S O) -> True.
intros.
repeat match goal with
x : _ |- _ => apply lem in x
end.
Abort.
Now we can generalize this
Ltac apply_in_premises t :=
repeat match goal with
x : _ |- _ => apply t in x
end.
and use it like this:
Goal P O -> P (S O) -> True.
intros.
apply_in_premises lem.
Abort.
Unfortunately, this way of doing it can cause an infinite loop if applying lem produces something else that lem can be applied to.
Axiom P : nat -> Prop.
Axiom lem : forall (n : nat), P n -> P (S n).
Ltac apply_in_premises t :=
repeat match goal with
x : _ |- _ => apply t in x
end.
Goal P O -> P (S O) -> nat -> True.
intros.
apply_in_premises lem. (* infinite loop *)
Abort.
If this is a concern for you, you can use a variant suggested by Yves in the comments. Simply changing apply t in x to apply t in x; revert x will ensure that that hypothesis won't be matched again. However, the end result will have all the hypotheses in the goal, like P -> G, instead of p: P as a premise and G as the goal.
To automatically reintroduce these hypotheses, we can keep track of how many times a hypothesis was reverted, then introduce them again.
Ltac intro_n n :=
match n with
| 0 => idtac
| S ?n' => intro; intro_n n'
end.
Ltac apply_in_premises_n t n :=
match goal with
| x : _ |- _ => apply t in x; revert x;
apply_in_premises_n t (S n)
| _ => intro_n n (* now intro all the premises that were reverted *)
end.
Tactic Notation "apply_in_premises" uconstr(t) := apply_in_premises_n t 0.
Axiom P : nat -> Prop.
Axiom lem : forall (n : nat), P n -> P (S n).
Goal P O -> P (S O) -> nat -> True.
intros.
apply_in_premises lem. (* only applies `lem` once in each of the premises *)
Abort.
Here, the tactic intro_n n applies intro n times.
I haven't tested this in general, but it works well in the case above. It might fail if a hypothesis can't be reverted (for example, if some other hypothesis depends on it). It also may reorder the hypotheses, since when a reverted hypothesis is reintroduced, it's put on the end of the hypothesis list.

How to prove that terms of a first-order language are well-founded?

Currently, I've started working on proving theorems about first-order logic in Coq(VerifiedMathFoundations). I've proved deduction theorem, but then I got stuck with lemma 1 for theorem of correctness. So I've formulated one elegant piece of the lemma compactly and I invite the community to look at it. That is an incomplete the proof of well-foundness of the terms. How to get rid of the pair of "admit"s properly?
(* PUBLIC DOMAIN *)
Require Export Coq.Vectors.Vector.
Require Export Coq.Lists.List.
Require Import Bool.Bool.
Require Import Logic.FunctionalExtensionality.
Require Import Coq.Program.Wf.
Definition SetVars := nat.
Definition FuncSymb := nat.
Definition PredSymb := nat.
Record FSV := {
fs : FuncSymb;
fsv : nat;
}.
Record PSV := MPSV{
ps : PredSymb;
psv : nat;
}.
Inductive Terms : Type :=
| FVC :> SetVars -> Terms
| FSC (f:FSV) : (Vector.t Terms (fsv f)) -> Terms.
Definition rela : forall (x y:Terms), Prop.
Proof.
fix rela 2.
intros x y.
destruct y as [s|f t].
+ exact False.
+ refine (or _ _).
exact (Vector.In x t).
simple refine (#Vector.fold_left Terms Prop _ False (fsv f) t).
intros Q e.
exact (or Q (rela x e)).
Defined.
Definition snglV {A} (a:A) := Vector.cons A a 0 (Vector.nil A).
Definition wfr : #well_founded Terms rela.
Proof.
clear.
unfold well_founded.
assert (H : forall (n:Terms) (a:Terms), (rela a n) -> Acc rela a).
{ fix iHn 1.
destruct n.
+ simpl. intros a b; destruct b.
+ simpl. intros a Q. destruct Q as [L|R].
* admit. (* smth like apply Acc_intro. intros m Hm. apply (iHn a). exact Hm. *)
* admit. (* like in /Arith/Wf_nat.v *)
}
intros a.
simple refine (H _ _ _).
exact (FSC (Build_FSV 0 1) (snglV a)).
simpl.
apply or_introl.
constructor.
Defined.
It is also available here: pastebin.
Update: At least transitivity is needed for well-foundness. I also started a proof, but didn't finished.
Fixpoint Tra (a b c:Terms) (Hc : rela c b) (Hb : rela b a) {struct a}: rela c a.
Proof.
destruct a.
+ simpl in * |- *.
exact Hb.
+ simpl in * |- *.
destruct Hb.
- apply or_intror.
revert f t H .
fix RECU 1.
intros f t H.
(* ... *)
Admitted.
You can do it by defining a height function on Terms, and showing that decreasing rela implies decreasing heights:
Require Export Coq.Vectors.Vector.
Require Export Coq.Lists.List.
Require Import Bool.Bool.
Require Import Logic.FunctionalExtensionality.
Require Import Coq.Program.Wf.
Definition SetVars := nat.
Definition FuncSymb := nat.
Definition PredSymb := nat.
Record FSV := {
fs : FuncSymb;
fsv : nat;
}.
Record PSV := MPSV{
ps : PredSymb;
psv : nat;
}.
Unset Elimination Schemes.
Inductive Terms : Type :=
| FVC :> SetVars -> Terms
| FSC (f:FSV) : (Vector.t Terms (fsv f)) -> Terms.
Set Elimination Schemes.
Definition Terms_rect (T : Terms -> Type)
(H_FVC : forall sv, T (FVC sv))
(H_FSC : forall f v, (forall n, T (Vector.nth v n)) -> T (FSC f v)) :=
fix loopt (t : Terms) : T t :=
match t with
| FVC sv => H_FVC sv
| FSC f v =>
let fix loopv s (v : Vector.t Terms s) : forall n, T (Vector.nth v n) :=
match v with
| #Vector.nil _ => Fin.case0 _
| #Vector.cons _ t _ v => fun n => Fin.caseS' n (fun n => T (Vector.nth (Vector.cons _ t _ v) n))
(loopt t)
(loopv _ v)
end in
H_FSC f v (loopv _ v)
end.
Definition Terms_ind := Terms_rect.
Fixpoint height (t : Terms) : nat :=
match t with
| FVC _ => 0
| FSC f v => S (Vector.fold_right (fun t acc => Nat.max acc (height t)) v 0)
end.
Definition rela : forall (x y:Terms), Prop.
Proof.
fix rela 2.
intros x y.
destruct y as [s|f t].
+ exact False.
+ refine (or _ _).
exact (Vector.In x t).
simple refine (#Vector.fold_left Terms Prop _ False (fsv f) t).
intros Q e.
exact (or Q (rela x e)).
Defined.
Require Import Lia.
Definition wfr : #well_founded Terms rela.
Proof.
apply (Wf_nat.well_founded_lt_compat _ height).
intros t1 t2. induction t2 as [sv2|f2 v2 IH]; simpl; try easy.
intros [t_v|t_sub]; apply Lt.le_lt_n_Sm.
{ clear IH. induction t_v; simpl; lia. }
revert v2 IH t_sub; generalize (fsv f2); clear f2.
intros k v2 IH t_sub.
enough (H : exists n, rela t1 (Vector.nth v2 n)).
{ destruct H as [n H]. apply IH in H. clear IH t_sub.
transitivity (height (Vector.nth v2 n)); try lia; clear H.
induction v2 as [|t2 m v2 IHv2].
- inversion n.
- apply (Fin.caseS' n); clear n; simpl; try lia.
intros n. specialize (IHv2 n). lia. }
clear IH.
assert (H : Vector.fold_right (fun t Q => Q \/ rela t1 t) v2 False).
{ revert t_sub; generalize False.
induction v2 as [|t2 n v2]; simpl in *; trivial.
intros P H; specialize (IHv2 _ H); clear H.
induction v2 as [|t2' n v2 IHv2']; simpl in *; tauto. }
clear t_sub.
induction v2 as [|t2 k v2 IH]; simpl in *; try easy.
destruct H as [H|H].
- apply IH in H.
destruct H as [n Hn].
now exists (Fin.FS n).
- now exists Fin.F1.
Qed.
(Note the use of the custom induction principle, which is needed because of the nested inductives.)
This style of development, however, is too complicated. Avoiding certain pitfalls would greatly simplify it:
The Coq standard vector library is too hard to use. The issue here is exacerbated because of the nested inductives. It would probably be better to use plain lists and have a separate well-formedness predicate on terms.
Defining a relation such as rela in proof mode makes it harder to read. Consider, for instance, the following simpler alternative:
Fixpoint rela x y :=
match y with
| FVC _ => False
| FSC f v =>
Vector.In x v \/
Vector.fold_right (fun z P => rela x z \/ P) v False
end.
Folding left has a poor reduction behavior, because it forces us to generalize over the accumulator argument to get the induction to go through. This is why in my proof I had to switch to a fold_right.

Proving equality on coinductive lazy lists in Coq

I am experimenting with Coq Coinductive types. I use the lazy list type form the Coq'Art book (sect. 13.1.4):
Set Implicit Arguments.
CoInductive LList (A:Set) : Set :=
| LNil : LList A
| LCons : A -> LList A -> LList A.
Implicit Arguments LNil [A].
CoFixpoint LAppend (A:Set) (u v:LList A) : LList A :=
match u with
| LNil => v
| LCons a u' => LCons a (LAppend u' v)
end.
In order to match the guard condition I also use the following decomposition functions form this book:
Definition LList_decomp (A:Set) (l:LList A) : LList A :=
match l with
| LNil => LNil
| LCons a l' => LCons a l'
end.
Lemma LList_decompose : forall (A:Set) (l:LList A), l = LList_decomp l.
Proof.
intros.
case l.
simpl.
reflexivity.
intros.
simpl.
reflexivity.
Qed.
The Lemma that LNil is left-neutral is easy to prove:
Lemma LAppend_LNil : forall (A:Set) (v:LList A), LAppend LNil v = v.
Proof.
intros A v.
rewrite LList_decompose with (l:= LAppend LNil v).
case v.
simpl.
reflexivity.
intros.
simpl.
reflexivity.
Qed.
But I got stuck by proving that LNil is also right-neutral:
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), LAppend v LNil = v.
After Arthur's answer, I tried with the new equality:
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), LListEq (LAppend v LNil) v.
Proof.
intros.
cofix.
destruct v.
rewrite LAppend_LNil.
apply LNilEq.
Here I'm stuck. Coq's answer is:
1 subgoal
A : Set
a : A
v : LList A
LAppend_v_LNil : LListEq (LAppend (LCons a v) LNil) (LCons a v)
______________________________________(1/1)
LListEq (LAppend (LCons a v) LNil) (LCons a v)
After Eponier's answer I want to give it the final touch by introducing an Extensionality Axiom:
Axiom LList_ext: forall (A:Set)(l1 l2: LList A), (LListEq l1 l2 ) -> l1 = l2.
With that axiom I get the final cut of the Lemma:
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), (LAppend v LNil) = v.
Proof.
intros.
apply LList_ext.
revert v.
cofix.
intros.
destruct v. Guarded. (* now we can safely destruct v *)
- rewrite LAppend_LNil.
constructor.
- rewrite (LList_decompose (LAppend _ _)).
simpl. constructor. apply LAppend_v_LNil.
Qed.
Now, here are my final questions for this thread:
Does such an axiom already exist in some Coq library?
Is that axiom consistent with Coq?
With what standard axioms of Coq (e.g. classic, UIP, fun ext, Streicher K) is that axiom inconsistent?
You guessed it right: just like for functions, Coq's generic notion of equality is too weak to be useful for most coinductive types. If you want to prove your result, you need to replace eq by a coinductive notion of equality for lists; for instance:
CoInductive LListEq (A:Set) : LList A -> LList A -> Prop :=
| LNilEq : LListEq A LNil LNil
| LConsEq x lst1 lst2 : LListEq A lst1 lst2 ->
LListEq A (LCons x lst1) (LCons x lst2).
Manipulating infinite objects is a vast topic in Coq. If you want to learn more, Adam Chlipala's CPDT has an entire chapter on coinduction.
A simple rule is to use cofix as soon as possible in your proofs.
Actually, in your proof of LAppend_v_LNil, the guarded condition is already violated at destruct v. You can check this fact using the command Guarded, which helps testing before the end of the proof if all the uses of coinduction hypotheses are legit.
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), LListEq (LAppend v LNil) v.
intros.
cofix.
destruct v. Fail Guarded.
Abort.
You should actually swap intros and cofix. From there, the proof is not difficult.
EDIT: here is the complete solution.
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), LListEq (LAppend v LNil) v.
cofix.
intros.
destruct v. Guarded. (* now we can safely destruct v *)
- rewrite LAppend_LNil.
constructor.
- rewrite (LList_decompose (LAppend _ _)).
simpl. constructor. apply LAppend_v_LNil.
Qed.

induction hypothesis for even numbers

I am trying to write an induction hypothesis specifically for proving properties of even numbers. I formulated and proved the following:
Theorem ind_hyp_on_evens:
forall (p : nat -> Prop),
(p 0 -> (forall n, p n -> p (S (S n))) ->
forall n, p (n + n)).
Proof.
intros p P0 P1.
intro n.
assert(p (n + n) /\ p (S (S (n + n)))).
induction n as [| n'].
split. unfold plus. assumption.
unfold plus.
apply (P1 0).
assumption.
destruct IHn' as [A B].
split.
rewrite <- plus_Snm_nSm.
rewrite -> ? plus_Sn_m.
assumption.
rewrite <- plus_Snm_nSm.
rewrite -> ? plus_Sn_m.
apply (P1 (S (S (n' + n')))).
assumption.
destruct H as [H1 H2].
assumption. Qed.
Despite the fact that it's proved, any attempt to use it results in the error message: "Error: Not the right number of induction arguments."
Can someone please tell me what is the problem with the induction hypothesis, or otherwise, how to apply it??
Thanks,
Mayer
I believe induction assumes that any induction principle that will be used has the
fixed form
forall ... (P : SomeType -> Type) ..., (* or ->Set or ->Prop *)
... ->
forall (v : SomeType), P v
Your ind_hyp_on_evens matches only P (plus n n) which seems to confuse induction.
If you have a suitable goal, say forall n, is_even (n+n), you can manually do the
steps that induction normally does and extend that to handle the special form.
intro n0; (* temp. var *)
pattern (n0 + n0); (* restructure as (fun x => (is_even x)) (n0+n0) *)
refine (ind_hyp_on_evens _ _ _ n0); (* apply ind. scheme *)
clear n0; [| intros n IHn ]. (* clear temp., do one 'intros' per branch *)
I don't know if it's possible to pack that up as a general helper tactic for any induction scheme, packing these steps up as a per-scheme Ltac tactic should work however.
You could consider writing an inductive predicate that describes even numbers (code not tested):
Inductive even : nat -> Prop :=
| evenO : even O
| evenSSn : forall n, even n -> even (S (S n))
.
Coq will generate the induction principle automatically.
You would have to prove that even n holds before being able to perform induction on the "evenness" of n.