So I have a large dataset that is a sample of a stackoverflow userbase. One line from this dataset is as follows:
<row Id="42" Reputation="11849" CreationDate="2008-08-01T13:00:11.640" DisplayName="Coincoin" LastAccessDate="2014-01-18T20:32:32.443" WebsiteUrl="" Location="Montreal, Canada" AboutMe="A guy with the attention span of a dead goldfish who has been having a blast in the industry for more than 10 years.
Mostly specialized in game and graphics programming, from custom software 3D renderers to accelerated hardware pipeline programming." Views="648" UpVotes="337" DownVotes="40" Age="35" AccountId="33" />
I would like to extract the number from reputation, in this case it is "11849" and the number from age, in this example it is "35" I would like to have them as floats.
The file is located in a HDFS so it comes in the format RDD
val linesWithAge = lines.filter(line => line.contains("Age=")) //This is filtering data which doesnt have age
val repSplit = linesWithAge.flatMap(line => line.split("\"")) //Here I am trying to split the data where there is a "
so when I split it with quotation marks the reputation is in index 3 and age in index 23 but how do I assign these to a map or a variable so I can use them as floats.
Also I need it to do this for every line on the RDD.
EDIT:
val linesWithAge = lines.filter(line => line.contains("Age=")) //transformations from the original input data
val repSplit = linesWithAge.flatMap(line => line.split("\""))
val withIndex = repSplit.zipWithIndex
val indexKey = withIndex.map{case (k,v) => (v,k)}
val b = indexKey.lookup(3)
println(b)
So if added an index to the array and now I've successfully managed to assign it to a variable but I can only do it to one item in the RDD, does anyone know how I could do it to all items?
What we want to do is to transform each element in the original dataset (represented as an RDD) into a tuple containing (Reputation, Age) as numeric values.
One possible approach is to transform each element of the RDD using String operations in order to extract the values of the elements "Age" and "Reputation", like this:
// define a function to extract the value of an element, given the name
def findElement(src: Array[String], name:String):Option[String] = {
for {
entry <- src.find(_.startsWith(name))
value <- entry.split("\"").lift(1)
} yield value
}
We then use that function to extract the interesting values from every record:
val reputationByAge = lines.flatMap{line =>
val elements = line.split(" ")
for {
age <- findElement(elements, "Age")
rep <- findElement(elements, "Reputation")
} yield (rep.toInt, age.toInt)
}
Note how we don't need to filter on "Age" before doing this. If we process a record that does not have "Age" or "Reputation", findElement will return None. Henceforth the result of the for-comprehension will be None and the record will be flattened by the flatMap operation.
A better way to approach this problem is by realizing that we are dealing with structured XML data. Scala provides built-in support for XML, so we can do this:
import scala.xml.XML
import scala.xml.XML._
// help function to map Strings to Option where empty strings become None
def emptyStrToNone(str:String):Option[String] = if (str.isEmpty) None else Some(str)
val xmlReputationByAge = lines.flatMap{line =>
val record = XML.loadString(line)
for {
rep <- emptyStrToNone((record \ "#Reputation").text)
age <- emptyStrToNone((record \ "#Age").text)
} yield (rep.toInt, age.toInt)
}
This method relies on the structure of the XML record to extract the right attributes. As before, we use the combination of Option values and flatMap to remove records that do not contain all the information we require.
First, you need a function which extracts the value for a given key of your line (getValueForKeyAs[T]), then do:
val rdd = linesWithAge.map(line => (getValueForKeyAs[Float](line,"Age"), getValueForKeyAs[Float](line,"Reputation")))
This should give you an rdd of type RDD[(Float,Float)]
getValueForKeyAs could be implemented like this:
def getValueForKeyAs[A](line:String, key:String) : A = {
val res = line.split(key+"=")
if(res.size==1) throw new RuntimeException(s"no value for key $key")
val value = res(1).split("\"")(1)
return value.asInstanceOf[A]
}
Related
I've 100+ million records stored in files with the following JSON structure (real data has way more columns, rows and is also nested)
{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}
The sqlContext.read.json function is unable to parse this since the records aren't on multiple lines but on one big line. The solution below solves this problem, but is a big performance killer. What would be the best way, performance wise, to handle this issue in Apache Spark?
val rdd = sc.wholeTextFiles("s3://some-bucket/**/*")
val validJSON = rdd.flatMap(_._2.replace("}{", "}\n{").split("\n"))
val df = sqlContext.read.json(validJSON)
df.count()
df.select("id").show()
This is a riff on Antot's answer, which should handle nested JSON
input.toVector
.foldLeft((false, Vector.empty[Char], Vector.empty[String])) {
case ((true, charAccum, strAccum), '{') => (false, Vector('{'), strAccum :+ charAccum.mkString);
case ((_, charAccum, strAccum), '}') => (true, charAccum :+ '}', strAccum);
case ((_, charAccum, strAccum), char) => (false, charAccum :+ char, strAccum)
}
._3
Basically what it does is split the data into a Vector[Char], and uses foldLeft to aggregate the input into substrings. The trick is to keep track of just enough information about the previous character to figure out if a { marks the start of a new object.
I used this input to test it (basically the OP's sample input, with a nested object thrown in):
val input = """{"id":"2-2-3","key":{ "test": "value"}}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}"""
And got this result, which looks good:
Vector({"id":"2-2-3","key":{ "test": "value"}},
{"id":"2-2-3","key":"value"},
{"id":"2-2-3","key":"value"},
{"id":"2-2-3","key":"value"})
The problem with the original approach is the call _._2.replace("}{", "}\n{", which creates another huge string from the input one, with new line chars inserted, which is then split once again into an array.
An improvement is possible by minimizing the creation of intermediate strings and retrieving the target ones as soon as possible. For this, we can play a bit with substrings:
val validJson = rdd.flatMap(rawJson => {
// functions extracted to make it more readable.
def nextObjectStartIndex(fromIndex: Int):Int = rawJson._2.indexOf('{', fromIndex)
def currObjectEndIndex(fromIndex: Int): Int = rawJson._2.indexOf('}', fromIndex)
def extractObject(fromIndex: Int, toIndex: Int): String = rawJson._2.substring(fromIndex, toIndex + 1)
// the resulting strings are put in a local buffer
val buffer = new ListBuffer[String]()
// init the scanning of the input string
var posStartNextObject = nextObjectStartIndex(0)
// main loop terminates when there are no more '{' chars
while (posStartNextObject != -1) {
val posEndObject = currObjectEndIndex(posStartNextObject)
val extractedObject = extractObject(posStartNextObject, posEndObject)
posStartNextObject = nextObjectStartIndex(posEndObject)
buffer += extractedObject
}
buffer
})
Please note that this approach would work only if the objects in the input JSON are not nested, supposing that all curly braces separate objects of same level.
I am new to Scala and Spark and would like some help in understanding why the below code isn't producing my desired outcome.
I am comparing two tables
My desired output schema is:
case class DiscrepancyData(fieldKey:String, fieldName:String, val1:String, val2:String, valExpected:String)
When I run the below code step by step manually, I actually end up with my desired outcome. Which is a List[DiscrepancyData] completely populated with my desired output. However, I must be missing something in the code below because it returns an empty list (before this code gets called there are other codes that is involved in reading tables from HIVE, mapping, grouping, filtering, etc etc etc):
val compareCols = Set(year, nominal, adjusted_for_inflation, average_private_nonsupervisory_wage)
val key = "year"
def compare(table:RDD[(String, Iterable[Row])]): List[DiscrepancyData] = {
var discs: ListBuffer[DiscrepancyData] = ListBuffer()
def compareFields(fieldOne:String, fieldTwo:String, colName:String, row1:Row, row2:Row): DiscrepancyData = {
if (fieldOne != fieldTwo){
DiscrepancyData(
row1.getAs(key).toString, //fieldKey
colName, //fieldName
row1.getAs(colName).toString, //table1Value
row2.getAs(colName).toString, //table2Value
row2.getAs(colName).toString) //expectedValue
}
else null
}
def comparison() {
for(row <- table){
var elem1 = row._2.head //gets the first element in the iterable
var elem2 = row._2.tail.head //gets the second element in the iterable
for(col <- compareCols){
var value1 = elem1.getAs(col).toString
var value2 = elem2.getAs(col).toString
var disc = compareFields(value1, value2, col, elem1, elem2)
if (disc != null) discs += disc
}
}
}
comparison()
discs.toList
}
I'm calling the above function as such:
var outcome = compare(groupedFiltered)
Here is the data in groupedFiltered:
(1991,CompactBuffer([1991,7.14,5.72,39%], [1991,4.14,5.72,39%]))
(1997,CompactBuffer([1997,4.88,5.86,39%], [1997,3.88,5.86,39%]))
(1999,CompactBuffer([1999,5.15,5.96,39%], [1999,5.15,5.97,38%]))
(1947,CompactBuffer([1947,0.9,2.94,35%], [1947,0.4,2.94,35%]))
(1980,CompactBuffer([1980,3.1,6.88,45%], [1980,3.1,6.88,48%]))
(1981,CompactBuffer([1981,3.15,6.8,45%], [1981,3.35,6.8,45%]))
The table schema for groupedFiltered:
(year String,
nominal Double,
adjusted_for_inflation Double,
average_provate_nonsupervisory_wage String)
Spark is a distributed computing engine. Next to "what the code is doing" of classic single-node computing, with Spark we also need to consider "where the code is running"
Let's inspect a simplified version of the expression above:
val records: RDD[List[String]] = ??? //whatever data
var list:mutable.List[String] = List()
for {record <- records
entry <- records }
{ list += entry }
The scala for-comprehension makes this expression look like a natural local computation, but in reality the RDD operations are serialized and "shipped" to executors, where the inner operation will be executed locally. We can rewrite the above like this:
records.foreach{ record => //RDD.foreach => serializes closure and executes remotely
record.foreach{entry => //record.foreach => local operation on the record collection
list += entry // this mutable list object is updated in each executor but never sent back to the driver. All updates are lost
}
}
Mutable objects are in general a no-go in distributed computing. Imagine that one executor adds a record and another one removes it, what's the correct result? Or that each executor comes to a different value, which is the right one?
To implement the operation above, we need to transform the data into our desired result.
I'd start by applying another best practice: Do not use null as return value. I also moved the row ops into the function. Lets rewrite the comparison operation with this in mind:
def compareFields(colName:String, row1:Row, row2:Row): Option[DiscrepancyData] = {
val key = "year"
val v1 = row1.getAs(colName).toString
val v2 = row2.getAs(colName).toString
if (v1 != v2){
Some(DiscrepancyData(
row1.getAs(key).toString, //fieldKey
colName, //fieldName
v1, //table1Value
v2, //table2Value
v2) //expectedValue
)
} else None
}
Now, we can rewrite the computation of discrepancies as a transformation of the initial table data:
val discrepancies = table.flatMap{case (str, row) =>
compareCols.flatMap{col => compareFields(col, row.next, row.next) }
}
We can also use the for-comprehension notation, now that we understand where things are running:
val discrepancies = for {
(str,row) <- table
col <- compareCols
dis <- compareFields(col, row.next, row.next)
} yield dis
Note that discrepancies is of type RDD[Discrepancy]. If we want to get the actual values to the driver we need to:
val materializedDiscrepancies = discrepancies.collect()
Iterating through an RDD and updating a mutable structure defined outside the loop is a Spark anti-pattern.
Imagine this RDD being spread over 200 machines. How can these machines be updating the same Buffer? They cannot. Each JVM will be seeing its own discs: ListBuffer[DiscrepancyData]. At the end, your result will not be what you expect.
To conclude, this is a perfectly valid (not idiomatic though) Scala code but not a valid Spark code. If you replace RDD with an Array it will work as expected.
Try to have a more functional implementation along these lines:
val finalRDD: RDD[DiscrepancyData] = table.map(???).filter(???)
When conducting research, I find it somewhat difficult to delete all the subsets in Spark RDD.
The data structure is RDD[(key,set)]. For example, it could be:
RDD[ ("peter",Set(1,2,3)), ("mike",Set(1,3)), ("jack",Set(5)) ]
Since the set of mike (Set(1,3)) is a subset of peter's (Set(1,2,3)), I want to delete "mike", which will end up with
RDD[ ("peter",Set(1,2,3)), ("jack",Set(5)) ]
It is easy to implement in python locally with two "for" loop operation. But when I want to extend to cloud with scala and spark, it is not that easy to find a good solution.
Thanks
I doubt we can escape to comparing each element to each other (the equivalent of a double loop in a non-distributed algorithm). The subset operation between sets is not reflexive, meaning that we need to compare is "alice" subsetof "bob" and is "bob" subsetof "alice".
To do this using the Spark API, we can resort to multiplying the data with itself using a cartesian product and verifying each entry of the resulting matrix:
val data = Seq(("peter",Set(1,2,3)), ("mike",Set(1,3)), ("anne", Set(7)),("jack",Set(5,4,1)), ("lizza", Set(5,1)), ("bart", Set(5,4)), ("maggie", Set(5)))
// expected result from this dataset = peter, olga, anne, jack
val userSet = sparkContext.parallelize(data)
val prod = userSet.cartesian(userSet)
val subsetMembers = prod.collect{case ((name1, set1), (name2,set2)) if (name1 != name2) && (set2.subsetOf(set1)) && (set1 -- set2).nonEmpty => (name2, set2) }
val superset = userSet.subtract(subsetMembers)
// lets see the results:
superset.collect()
// Array[(String, scala.collection.immutable.Set[Int])] = Array((olga,Set(1, 2, 3)), (peter,Set(1, 2, 3)), (anne,Set(7)), (jack,Set(5, 4, 1)))
This can be achieved by using RDD.fold function.
In this case the output required is a "List" (ItemList) of superset items. For this the input should also be converted to "List" (RDD of ItemList)
import org.apache.spark.rdd.RDD
// type alias for convinience
type Item = Tuple2[String, Set[Int]]
type ItemList = List[Item]
// Source RDD
val lst:RDD[Item] = sc.parallelize( List( ("peter",Set(1,2,3)), ("mike",Set(1,3)), ("jack",Set(5)) ) )
// Convert each element as a List. This is needed for using fold function on RDD
// since the data-type of the parameters are the same as output parameter
// data-type for fold function
val listOflst:RDD[ItemList] = lst.map(x => List(x))
// for each element in second ItemList
// - Check if it is not subset of any element in first ItemList and add first
// - Remove the subset of newly added elements
def combiner(first:ItemList, second:ItemList) : ItemList = {
def helper(lst: ItemList, i:Item) : ItemList = {
val isSubset: Boolean = lst.exists( x=> i._2.subsetOf(x._2))
if( isSubset) lst else i :: lst.filterNot( x => x._2.subsetOf(i._2))
}
second.foldLeft(first)(helper)
}
listOflst.fold(List())(combiner)
You can use filter after a map.
You can build like a map that will return a value for what you want to delete. First build a function:
def filter_mike(line):
if line[1] != Set(1,3):
return line
else:
return None
Then you can filter now like this:
your_rdd.map(filter_mike).filter(lambda x: x != None)
This will work
I'm working with Spark and Scala. I have an RDD of Array[String] that I'm going to iterate through. The RDD contains values for attributes like (name, age, work, ...). I'm using a Sequence of mutable Sets of Strings (called attributes) to collect all unique values for each attribute.
Think of the RDD as something like this:
("name1","21","JobA")
("name2","21","JobB")
("name3","22","JobA")
In the end I want something like this:
attributes = (("name1","name2","name3"),("21","22"),("JobA","JobB"))
I have the following code:
val someLength = 10
val attributes = Seq.fill[mutable.Set[String]](someLength)(mutable.Set())
val splitLines = rdd.map(line => line.split("\t"))
lines.foreach(line => {
for {(value, index) <- line.zipWithIndex} {
attributes(index).add(value)
// #1
}
})
// #2
When I debug and stop at the line marked with #1, everything is fine, attributes is correctly filled with unique values.
But after the loop, at line #2, attributes is empty again. Looking into it shows, that attributes is a sequence of sets, that are all of size 0.
Seq()
Seq()
...
What am I doing wrong? Is there some kind of scoping going on, that I'm not aware of?
The answer lies in the fact that Spark is a distributed engine. I will give you a rough idea of the problem that you are facing. Here the elements in each RDD are bucketed into Partitions and each Partition potentially lives on a different node.
When you write rdd1.foreach(f) that f is wrapped inside a closure (Which gets copies of the corresponding objects). Now, this closure is serialized and then sent to each node where it is applied for each element in that Partition.
Here, your f will get a copy of attributes in its wrapped closure and hence when f is executed, it interacts with that copy of attributes and not with attributes that you want. This results in your attributes being left out without any changes.
I hope the problem is clear now.
val yourRdd = sc.parallelize(List(
("name1","21","JobA"),
("name2","21","JobB"),
("name3","22","JobA")
))
val yourNeededRdd = yourRdd
.flatMap({ case (name, age, work) => List(("name", name), ("age", age), ("work", work)) })
.groupBy({ case (attrName, attrVal) => attrName })
.map({ case (attrName, group) => (attrName, group.toList.map(_._2).distinct })
// RDD(
// ("name", List("name1", "name2", "name3")),
// ("age", List("21", "22")),
// ("work", List("JobA", "JobB"))
// )
// Or
val distinctNamesRdd = yourRdd.map(_._1).distinct
// RDD("name1", "name2", "name3")
val distinctAgesRdd = yourRdd.map(_._2).distinct
// RDD("21", "22")
val distinctWorksRdd = yourRdd.map(_._3).distinct
// RDD("JobA", "JobB")
I use the following command to fill an RDD with a bunch of arrays containing 2 strings ["filename", "content"].
Now I want to iterate over every of those occurrences to do something with every filename and content.
val someRDD = sc.wholeTextFiles("hdfs://localhost:8020/user/cloudera/*")
I can't seem to find any documentation on how to do this however.
So what I want is this:
foreach occurrence-in-the-rdd{
//do stuff with the array found on loccation n of the RDD
}
You call various methods on the RDD that accept functions as parameters.
// set up an example -- an RDD of arrays
val sparkConf = new SparkConf().setMaster("local").setAppName("Example")
val sc = new SparkContext(sparkConf)
val testData = Array(Array(1,2,3), Array(4,5,6,7,8))
val testRDD = sc.parallelize(testData, 2)
// Print the RDD of arrays.
testRDD.collect().foreach(a => println(a.size))
// Use map() to create an RDD with the array sizes.
val countRDD = testRDD.map(a => a.size)
// Print the elements of this new RDD.
countRDD.collect().foreach(a => println(a))
// Use filter() to create an RDD with just the longer arrays.
val bigRDD = testRDD.filter(a => a.size > 3)
// Print each remaining array.
bigRDD.collect().foreach(a => {
a.foreach(e => print(e + " "))
println()
})
}
Notice that the functions you write accept a single RDD element as input, and return data of some uniform type, so you create an RDD of the latter type. For example, countRDD is an RDD[Int], while bigRDD is still an RDD[Array[Int]].
It will probably be tempting at some point to write a foreach that modifies some other data, but you should resist for reasons described in this question and answer.
Edit: Don't try to print large RDDs
Several readers have asked about using collect() and println() to see their results, as in the example above. Of course, this only works if you're running in an interactive mode like the Spark REPL (read-eval-print-loop.) It's best to call collect() on the RDD to get a sequential array for orderly printing. But collect() may bring back too much data and in any case too much may be printed. Here are some alternative ways to get insight into your RDDs if they're large:
RDD.take(): This gives you fine control on the number of elements you get but not where they came from -- defined as the "first" ones which is a concept dealt with by various other questions and answers here.
// take() returns an Array so no need to collect()
myHugeRDD.take(20).foreach(a => println(a))
RDD.sample(): This lets you (roughly) control the fraction of results you get, whether sampling uses replacement, and even optionally the random number seed.
// sample() does return an RDD so you may still want to collect()
myHugeRDD.sample(true, 0.01).collect().foreach(a => println(a))
RDD.takeSample(): This is a hybrid: using random sampling that you can control, but both letting you specify the exact number of results and returning an Array.
// takeSample() returns an Array so no need to collect()
myHugeRDD.takeSample(true, 20).foreach(a => println(a))
RDD.count(): Sometimes the best insight comes from how many elements you ended up with -- I often do this first.
println(myHugeRDD.count())
The fundamental operations in Spark are map and filter.
val txtRDD = someRDD filter { case(id, content) => id.endsWith(".txt") }
the txtRDD will now only contain files that have the extension ".txt"
And if you want to word count those files you can say
//split the documents into words in one long list
val words = txtRDD flatMap { case (id,text) => text.split("\\s+") }
// give each word a count of 1
val wordT = words map (x => (x,1))
//sum up the counts for each word
val wordCount = wordsT reduceByKey((a, b) => a + b)
You want to use mapPartitions when you have some expensive initialization you need to perform -- for example, if you want to do Named Entity Recognition with a library like the Stanford coreNLP tools.
Master map, filter, flatMap, and reduce, and you are well on your way to mastering Spark.
I would try making use of a partition mapping function. The code below shows how an entire RDD dataset can be processed in a loop so that each input goes through the very same function. I am afraid I have no knowledge about Scala, so everything I have to offer is java code. However, it should not be very difficult to translate it into scala.
JavaRDD<String> res = file.mapPartitions(new FlatMapFunction <Iterator<String> ,String>(){
#Override
public Iterable<String> call(Iterator <String> t) throws Exception {
ArrayList<String[]> tmpRes = new ArrayList <>();
String[] fillData = new String[2];
fillData[0] = "filename";
fillData[1] = "content";
while(t.hasNext()){
tmpRes.add(fillData);
}
return Arrays.asList(tmpRes);
}
}).cache();
what the wholeTextFiles return is a Pair RDD:
def wholeTextFiles(path: String, minPartitions: Int): RDD[(String, String)]
Read a directory of text files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file.
Here is an example of reading the files at a local path then printing every filename and content.
val conf = new SparkConf().setAppName("scala-test").setMaster("local")
val sc = new SparkContext(conf)
sc.wholeTextFiles("file:///Users/leon/Documents/test/")
.collect
.foreach(t => println(t._1 + ":" + t._2));
the result:
file:/Users/leon/Documents/test/1.txt:{"name":"tom","age":12}
file:/Users/leon/Documents/test/2.txt:{"name":"john","age":22}
file:/Users/leon/Documents/test/3.txt:{"name":"leon","age":18}
or converting the Pair RDD to a RDD first
sc.wholeTextFiles("file:///Users/leon/Documents/test/")
.map(t => t._2)
.collect
.foreach { x => println(x)}
the result:
{"name":"tom","age":12}
{"name":"john","age":22}
{"name":"leon","age":18}
And I think wholeTextFiles is more compliant for small files.
for (element <- YourRDD)
{
// do what you want with element in each iteration, and if you want the index of element, simply use a counter variable in this loop beginning from 0
println (element._1) // this will print all filenames
}