Boundary removal of images in Matlab - matlab

I'm trying to remove boundary from my image in Matlab.
I've tried this
clc,clear,clf
Im=im2double(imread('Im.png'));
imshow(Im);title('Original Image')
pause(.5)
imshow(edge(Im));title('after Sobel')
pause(.5)
imshow(Im-edge(Im));title('Im-edge(Im)')
and the result is
but there is two clear problem:
The output of the edge by default Sobel contain some inner part of shape.
Subtract binary image from gray scale one!(output of edge is binary)
any help would be appreciated.
Download original image.

One way I can think of doing this is threshold the image so that you have a solid white object, shrink the object by a little bit. Then, use the slightly decreased object to index into the main object mask and remove this area. Also, increase the area of the intermediate result by a little bit to ensure that you remove the outer edge of the boundary. This will ultimately produce a hollowed out mask which is designed to remove the boundaries of your object within some tolerance while leaving the rest of the image intact. Any values that are true in this mask can be used to remove the boundaries.
For reproducibility, I've uploaded your image to Stack Imgur so that we don't have to rely on a third party website to download your image:
This "little bit" for shrinking and growing you will have to play around with. I chose 5 pixels as this seems to work. To do the shrinking and growing, use an erosion and dilation respectively with imerode and imdilate respectively and I used a structuring element of a 5 x 5 pixel square.
% Read from Stack Imgur directly
im = imread('https://i.stack.imgur.com/UJcKA.png');
% Perform Sobel Edge detection
sim = edge(im, 'sobel');
% Find the mask of the object
mask = im > 5;
% Shrink the object
se = strel('square', 5);
mask_s = imerode(mask, se);
% Remove the inner boundary of the object
mask(mask_s) = false;
% Slightly enlarge now to ensure outer boundary is removed
mask = imdilate(mask, se);
% Create new image by removing the boundaries of the
% edge image
sim(mask) = false;
% Show the result
figure; imshow(sim);
We now get this image:
You'll have to play around with the Sobel threshold because I actually don't know what you used to get the desired image you want. Suffice it to say that the default threshold does not give what your expected results show.

Related

How to group pixels into blobs in Matlab?

I have this image with white points on a dark background:
I want to group pixels that are close by into a single blob. In this image, that would mean that there will be two blobs in the image, one for the pixels at the top and one for the pixels at the bottom. Any pixels that are not too close to these two blobs must be changed into the background color (A threshold must be specified to choose which pixels fall into the blobs and which of them are too far). How do I go about this? Any Matlab function that can be used?
To group dots, one can simply smooth the image sufficiently to blur them together. The dots that are close together (with respect to the blur kernel size) will be merged, the dots that are further apart will not.
The best way to smooth the image is using a Gaussian filter. MATLAB implements this using the imgaussfilt function since 2015a. For older versions of MATLAB (or Octave, as I'm using here) you can use fspecial and imfilter instead. But you have to be careful because fspecial makes it really easy to create a kernel that is not at all a Gaussian kernel. This is the reason that that method is deprecated now, and the imgaussfilt function was created.
Here is some code that does this:
% Load image
img = imread('https://i.stack.imgur.com/NIcb9.png');
img = rgb2gray(img);
% Threshold to get dots
dots = img > 127; % doesn't matter, this case is trivial
% Group dots
% smooth = imgaussfilt(img,10); % This works for newer MATLABs
g = fspecial("gaussian",6*10+1,10);
smooth = imfilter(img,g,'replicate'); % I'm using Octave here, it doesn't yet implement imgaussfilt
% Find an appropriate threshold for dot density
regions = smooth > 80; % A smaller value makes for fewer isolated points
% Dots within regions
newDots = dots & regions;
To identify blobs that are within the same region, simply label the regions image, and multiply with the dots image:
% Label regions
regions = bwlabel(regions);
% Label dots within regions
newDots = regions .* dots;
% Display
imshow(label2rgb(newDots,'jet','k'))

Autonomous seam detection in Images on matlab

I'm trying to detect seams in welding images for an autonomous welding process.
I want to find pixel positions of the detected line (the red line in the desired image) in the original image.
I used the following code and finally removed noise from the image to reach the result below.
clc,clear,clf;
im = imread('https://i.stack.imgur.com/UJcKA.png');
imshow(im);title('Original image'); pause(0.5);
sim = edge(im, 'sobel');
imshow(sim);title('after Sobel'); pause(0.5);
mask = im > 5;
se = strel('square', 5);
mask_s = imerode(mask, se);
mask(mask_s) = false;
mask = imdilate(mask, se);
sim(mask) = false;
imshow(sim);title('after mask');pause(0.5);
sim= medfilt2(sim);
imshow(sim);title('after noise removal')
Unfortunately there is nothing remaining in the image to find the seam perfectly.
Any help would be appreciated.
Download Original image.
You need to make your filter more robust to noise. This can be done by giving it a larger support:
filter = [ones(2,9);zeros(1,9);-ones(2,9)];
msk = imerode(im > 0, ones(11)); % only object pixels, discarding BG
fim =imfilter(im,filter);
robust = bwmorph((fim>0.75).*msk,'skel',inf); % get only strong pixels
The robust mask looks like:
As you can see, the seam line is well detected, we just need to pick it as the largest connected component:
st = regionprops(bwlabel(robust,8), 'Area', 'PixelList');
[ma mxi] = max([st.Area]); % select the region with the largest area
Now we can fit a polygon (2nd degree) to the seem:
pp=polyfit(st(mxi).PixelList(:,1), st(mxi).PixelList(:,2), 2);
And here it is over the image:
imshow(im, 'border','tight');hold on;
xx=1:size(im,2);plot(xx,polyval(pp,xx)+2,'r');
Note the +2 Y offset due to filter width.
PS,
You might find this thread relevant.
Shai gives a great answer, but I wanted to add a bit more context about why your noise filtering doesn't work.
Why median filtering doesn't work
Wikipedia suggests that median filtering removes noise while preserving edges, which is why you might have chosen to use it. However, in your case it will almost certainly not work, here's why:
Median filtering slides a window across the image. In each area, it replaces the central pixel with the median value from the surrounding window. medfilt2 uses a 3x3 window by default. Let's look at a 3x3 block near your line,
A 3x3 block around [212 157] looks like this
[0 0 0
1 1 1
0 0 0]
The median value is 0! So even though we're in the middle of a line segment, the pixel will be filtered out.
The alternative to median filtering
Shai's method for removing noise instead finds the largest connected group of pixels and ignores smaller groups of pixels. If you also wanted to remove these small groups from your image, Matlab provides a filter bwareaopen which removes small objects from binary images.
For example, if you replace your line
sim= medfilt2(sim);
with
sim= bwareaopen(sim, 4);
The result is much better
Alternative edge detectors
One last note, Shai uses a horizontal gradient filter to find horizontal edges in your image. It works great because your edge is horizontal. If you edge will not always be horizontal, you might want to use another edge detection method. In your original code, you use Sobel, but Matlab provides many options, all of which perform better if you tune their thresholds. As an example, in the following image, I've highlighted the pixels selected by your code (with bwareaopen modification) using four different edge detectors.

Unite endpoints of edge with line

I'm trying to make an object recognition program using a k-NN classifier. I've got a bunch of images for the training part of the classifier and a bunch of images to recognize. Those images are in grayscale and there's an object (only its edge) per image. I need to calculate their center of mass so I use
img=im2bw(img)
and then regionprops(img,'centroid').
The problem is that some of those edges aren't closed so regionprops doesn't work then. I tried eroding the image (the edge is black, white background) but the endlines of those edges are too apart from eachother. I tried using bwmorph function to do so but still can't make it work.
Any ideas?
EDIT
I'm adding some images in case anyone wants to try:
Use morphological operation
Use a closing operation to make your structures filled.
1. As first step prepare your image data
im = imread('your image.jpg');
% Get first channel as gray scale information
im = im(:,:,1);
% Threshold it for simplicyty, you may work on grayscale too.
im1 = logical(im > 128);
2. Use a simple block shaped structuring element
The structuring element is defined by:
strel=ones(3,3);
You may use disk shaped elements or whatever gives the best result to you.
3. Apply structuring element a couple of times
Apply the strel a couple of times with an erosion operator to your original image to close your figure:
for i=1:20
im1 = imerode(im1,strel);
end
4. Dilate the image to get back to original shape
Next step is to dilate the image to get back to your original outer shape:
for i=1:20
im1 = imdilate(im1,strel);
end
Final result
The final result should be suitable to get a sufficiently precise center or gravity.

Creating intensity band across image border using matlab

I have this image (8 bit, pseudo-colored, gray-scale):
And I want to create an intensity band of a specific measure around it's border.
I tried erosion and other mathematical operations, including filtering to achieve the desired band but the actual image intensity changes as soon as I use erosion to cut part of the border.
My code so far looks like:
clear all
clc
x=imread('8-BIT COPY OF EGFP001.tif');
imshow(x);
y = imerode(x,strel('disk',2));
y1=imerode(y,strel('disk',7));
z=y-y1;
figure
z(z<30)=0
imshow(z)
The main problem I am encountering using this is that it somewhat changes the intensity of the original images as follows:
So my question is, how do I create such a band across image border without changing any other attribute of the original image?
Going with what beaker was talking about and what you would like done, I would personally convert your image into binary where false represents the background and true represents the foreground. When you're done, you then erode this image using a good structuring element that preserves the roundness of the contours of your objects (disk in your example).
The output of this would be the interior of the large object that is in the image. What you can do is use this mask and set these locations in the image to black so that you can preserve the outer band. As such, try doing something like this:
%// Read in image (directly from StackOverflow) and pseudo-colour the image
[im,map] = imread('http://i.stack.imgur.com/OxFwB.png');
out = ind2rgb(im, map);
%// Threshold the grayscale version
im_b = im > 10;
%// Create structuring element that removes border
se = strel('disk',7);
%// Erode thresholded image to get final mask
erode_b = imerode(im_b, se);
%// Duplicate mask in 3D
mask_3D = cat(3, erode_b, erode_b, erode_b);
%// Find indices that are true and black out result
final = out;
final(mask_3D) = 0;
figure;
imshow(final);
Let's go through the code slowly. The first two lines take your PNG image, which contains a grayscale image and a colour map and we read both of these into MATLAB. Next, we use ind2rgb to convert the image into its pseudo-coloured version. Once we do this, we use the grayscale image and threshold the image so that we capture all of the object pixels. I threshold the image with a value of 10 to escape some quantization noise that is seen in the image. This binary image is what we will operate on to determine those pixels we want to set to 0 to get the outer border.
Next, we declare a structuring element that is a disk of a radius of 7, then erode the mask. Once I'm done, I duplicate this mask in 3D so that it has the same number of channels as the pseudo-coloured image, then use the locations of the mask to set the values that are internal to the object to 0. The result would be the original image, but having the outer contours of all of the objects remain.
The result I get is:

MATLAB Image Processing - Find Edge and Area of Image

As a preface: this is my first question - I've tried my best to make it as clear as possible, but I apologise if it doesn't meet the required standards.
As part of a summer project, I am taking time-lapse images of an internal melt figure growing inside a crystal of ice. For each of these images I would like to measure the perimeter of, and area enclosed by the figure formed. Linked below is an example of one of my images:
The method that I'm trying to use is the following:
Load image, crop, and convert to grayscale
Process to reduce noise
Find edge/perimeter
Attempt to join edges
Fill perimeter with white
Measure Area and Perimeter using regionprops
This is the code that I am using:
clear; close all;
% load image and convert to grayscale
tyrgb = imread('TyndallTest.jpg');
ty = rgb2gray(tyrgb);
figure; imshow(ty)
% apply a weiner filter to remove noise.
% N is a measure of the window size for detecting coherent features
N=20;
tywf = wiener2(ty,[N,N]);
tywf = tywf(N:end-N,N:end-N);
% rescale the image adaptively to enhance contrast without enhancing noise
tywfb = adapthisteq(tywf);
% apply a canny edge detection
tyedb = edge(tywfb,'canny');
%join edges
diskEnt1 = strel('disk',8); % radius of 4
tyjoin1 = imclose(tyedb,diskEnt1);
figure; imshow(tyjoin1)
It is at this stage that I am struggling. The edges do not quite join, no matter how much I play around with the morphological structuring element. Perhaps there is a better way to complete the edges? Linked is an example of the figure this code outputs:
The reason that I am trying to join the edges is so that I can fill the perimeter with white pixels and then use regionprops to output the area. I have tried using the imfill command, but cannot seem to fill the outline as there are a large number of dark regions to be filled within the perimeter.
Is there a better way to get the area of one of these melt figures that is more appropriate in this case?
As background research: I can make this method work for a simple image consisting of a black circle on a white background using the below code. However I don't know how edit it to handle more complex images with edges that are less well defined.
clear all
close all
clc
%% Read in RGB image from directory
RGB1 = imread('1.jpg') ;
%% Convert RPG image to grayscale image
I1 = rgb2gray(RGB1) ;
%% Transform Image
%CROP
IC1 = imcrop(I1,[74 43 278 285]);
%BINARY IMAGE
BW1 = im2bw(IC1); %Convert to binary image so the boundary can be traced
%FIND PERIMETER
BWP1 = bwperim(BW1);
%Traces perimeters of objects & colours them white (1).
%Sets all other pixels to black (0)
%Doing the same job as an edge detection algorithm?
%FILL PERIMETER WITH WHITE IN ORDER TO MEASURE AREA AND PERIMETER
BWF1 = imfill(BWP1); %This opens figure and allows you to select the areas to fill with white.
%MEASURE PERIMETER
D1 = regionprops(BWF1, 'area', 'perimeter');
%Returns an array containing the properties area and perimeter.
%D1(1) returns the perimeter of the box and an area value identical to that
%perimeter? The box must be bounded by a perimeter.
%D1(2) returns the perimeter and area of the section filled in BWF1
%% Display Area and Perimeter data
D1(2)
I think you might have room to improve the effect of edge detection in addition to the morphological transformations, for instance the following resulted in what appeared to me a relatively satisfactory perimeter.
tyedb = edge(tywfb,'sobel',0.012);
%join edges
diskEnt1 = strel('disk',7); % radius of 4
tyjoin1 = imclose(tyedb,diskEnt1);
In addition I used bwfill interactively to fill in most of the interior. It should be possible to fill the interior programatically but I did not pursue this.
% interactively fill internal regions
[ny nx] = size(tyjoin1);
figure; imshow(tyjoin1)
tyjoin2=tyjoin1;
titl = sprintf('click on a region to fill\nclick outside window to stop...')
while 1
pts=ginput(1)
tyjoin2 = bwfill(tyjoin2,pts(1,1),pts(1,2),8);
imshow(tyjoin2)
title(titl)
if (pts(1,1)<1 | pts(1,1)>nx | pts(1,2)<1 | pts(1,2)>ny), break, end
end
This was the result I obtained
The "fractal" properties of the perimeter may be of importance to you however. Perhaps you want to retain the folds in your shape.
You might want to consider Active Contours. This will give you a continous boundary of the object rather than patchy edges.
Below are links to
A book:
http://www.amazon.co.uk/Active-Contours-Application-Techniques-Statistics/dp/1447115570/ref=sr_1_fkmr2_1?ie=UTF8&qid=1377248739&sr=8-1-fkmr2&keywords=Active+shape+models+Andrew+Blake%2C+Michael+Isard
A demo:
http://users.ecs.soton.ac.uk/msn/book/new_demo/Snakes/
and some Matlab code on the File Exchange:
http://www.mathworks.co.uk/matlabcentral/fileexchange/28149-snake-active-contour
and a link to a description on how to implement it: http://www.cb.uu.se/~cris/blog/index.php/archives/217
Using the implementation on the File Exchange, you can get something like this:
%% Load the image
% You could use the segmented image obtained previously
% and then apply the snake on that (although I use the original image).
% This will probably make the snake work better and the edges
% in your image is not that well defined.
% Make sure the original and the segmented image
% have the same size. They don't at the moment
I = imread('33kew0g.jpg');
% Convert the image to double data type
I = im2double(I);
% Show the image and select some points with the mouse (at least 4)
% figure, imshow(I); [y,x] = getpts;
% I have pre-selected the coordinates already
x = [ 525.8445 473.3837 413.4284 318.9989 212.5783 140.6320 62.6902 32.7125 55.1957 98.6633 164.6141 217.0749 317.5000 428.4172 494.3680 527.3434 561.8177 545.3300];
y = [ 435.9251 510.8691 570.8244 561.8311 570.8244 554.3367 476.3949 390.9586 311.5179 190.1085 113.6655 91.1823 98.6767 106.1711 142.1443 218.5872 296.5291 375.9698];
% Make an array with the selected coordinates
P=[x(:) y(:)];
%% Start Snake Process
% You probably have to fiddle with the parameters
% a bit more that I have
Options=struct;
Options.Verbose=true;
Options.Iterations=1000;
Options.Delta = 0.02;
Options.Alpha = 0.5;
Options.Beta = 0.2;
figure(1);
[O,J]=Snake2D(I,P,Options);
If the end result is an area/diameter estimate, then why not try to find maximal and minimal shapes that fit in the outline and then use the shapes' area to estimate the total area. For instance, compute a minimal circle around the edge set then a maximal circle inside the edges. Then you could use these to estimate diameter and area of the actual shape.
The advantage is that your bounding shapes can be fit in a way that minimizes error (unbounded edges) while optimizing size either up or down for the inner and outer shape, respectively.