Spark-submit cannot access local file system - scala

Really simple Scala code files at the first count() method call.
def main(args: Array[String]) {
// create Spark context with Spark configuration
val sc = new SparkContext(new SparkConf().setAppName("Spark File Count"))
val fileList = recursiveListFiles(new File("C:/data")).filter(_.isFile).map(file => file.getName())
val filesRDD = sc.parallelize(fileList)
val linesRDD = sc.textFile("file:///temp/dataset.txt")
val lines = linesRDD.count()
val files = filesRDD.count()
}
I don't want to set up a HDFS installation for this right now. How do I configure Spark to use the local file system? This works with spark-shell.

To read the file from local filesystem(From Windows directory) you need to use below pattern.
val fileRDD = sc.textFile("C:\\Users\\Sandeep\\Documents\\test\\test.txt");
Please see below sample working program to read data from local file system.
package com.scala.example
import org.apache.spark._
object Test extends Serializable {
val conf = new SparkConf().setAppName("read local file")
conf.set("spark.executor.memory", "100M")
conf.setMaster("local");
val sc = new SparkContext(conf)
val input = "C:\\Users\\Sandeep\\Documents\\test\\test.txt"
def main(args: Array[String]): Unit = {
val fileRDD = sc.textFile(input);
val counts = fileRDD.flatMap(line => line.split(","))
.map(word => (word, 1))
.reduceByKey(_ + _)
counts.collect().foreach(println)
//Stop the Spark context
sc.stop
}
}

val sc = new SparkContext(new SparkConf().setAppName("Spark File
Count")).setMaster("local[8]")
might help

Related

Getting error while saving PairRdd in Spark Stream [duplicate]

This question already has an answer here:
Custom partiotioning of JavaDStreamPairRDD
(1 answer)
Closed 4 years ago.
I am trying to save my Pair Rdd in spark streaming but getting error while saving at last step .
Here is my sample code
def main(args: Array[String]) {
val inputPath = args(0)
val output = args(1)
val noOfHashPartitioner = args(2).toInt
println("IN Streaming ")
val conf = new SparkConf().setAppName("Simple Application").setMaster("local[*]")
val sc = new SparkContext(conf)
val hadoopConf = sc.hadoopConfiguration;
//hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
val ssc = new org.apache.spark.streaming.StreamingContext(sc, Seconds(60))
val input = ssc.textFileStream(inputPath)
val pairedRDD = input.map(row => {
val split = row.split("\\|")
val fileName = split(0)
val fileContent = split(1)
(fileName, fileContent)
})
import org.apache.hadoop.io.NullWritable
import org.apache.spark.HashPartitioner
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat
class RddMultiTextOutputFormat extends MultipleTextOutputFormat[Any, Any] {
override def generateActualKey(key: Any, value: Any): Any = NullWritable.get()
override def generateFileNameForKeyValue(key: Any, value: Any, name: String): String = key.asInstanceOf[String]
}
//print(pairedRDD)
pairedRDD.partitionBy(new HashPartitioner(noOfHashPartitioner)).saveAsHadoopFile(output, classOf[String], classOf[String], classOf[RddMultiTextOutputFormat], classOf[GzipCodec])
ssc.start() // Start the computation
ssc.awaitTermination() // Wait for the computation to terminate
}
I am getting at last step while saving .I am new to spark streaming so must be missing something here .
Getting error like
value partitionBy is not a member of
org.apache.spark.streaming.dstream.DStream[(String, String)]
Please help
pairedRDD is of type DStream[(String, String)] not RDD[(String,String)]. The method partitionBy is not available on DStreams.
Maybe look into foreachRDD which should be available on DStreams.
EDIT: A bit more context explanation textFileStream will set up a directory watch on the specified path and whenever there are new files will stream the content. so that's where the stream aspect comes from. Is that what you want? or do you just want to read the content of the directory "as is" once? Then there's readTextFiles which will return a non-stream container.

Spark job hangingup in EC2 m4.10x machine

I have the below code that launches a spark job, when I am working on files less than 40 (maximum cores in my machine) the parallelize works fine, however when I work on files more than that its creating trouble. Any advise please.
`
object Cleanup extends Processor {
def main(args: Array[String]): Unit = {
val fileSeeker = new TelemetryFileSeeker("Config")
val files = fileSeeker.searchFiles(bucketName, urlPrefix, "2018-01-01T00:00:00.000Z", "2018-04-30T00:00:00.000Z").filter(_.endsWith(".gz"))
.map(each => (each, each.slice(0, each.lastIndexOf("/")))).slice(0,100)
if (files.nonEmpty) {
println("Number of Files" + files.length)
sc.parallelize(files).map(each => changeFormat(each)).collect()
}
}
def changeFormat(file: (String, String)): Unit = {
val fileProcessor = new Processor("Config", sparksession)
val uuid = java.util.UUID.randomUUID.toString
val tempInput = "inputfolder" + uuid
val tempOutput = "outputfolder" + uuid
val inpaths = Paths.get(tempInput)
val outpaths = Paths.get(tempOutput)
if (Files.notExists(inpaths)) Files.createDirectory(inpaths)
if (Files.notExists(outpaths)) Files.createDirectory(outpaths)
val downloadedFiles = fileProcessor.downloadAndUnzip(bucketName, List(file._1), tempInput)
val parsedFiles = fileProcessor.parseCSV(downloadedFiles)
parsedFiles.select(
"pa1",
"pa2",
"pa3"
).withColumn("pa4", lit(0.0)).write.mode(SaveMode.Overwrite).format(CSV_FORMAT)
.option("codec", "org.apache.hadoop.io.compress.GzipCodec").save(tempOutput)
val processedFiles = new File(tempOutput).listFiles.filter(_.getName.endsWith(".gz"))
val filesNames = processedFiles.map(_.getName).toList
val filesPaths = processedFiles.map(_.getPath).toList
fileProcessor.cleanUpRemote(bucketName, "new/" + file._2, filesNames)
fileProcessor.uploadFiles(bucketName, "new/" + file._2, filesPaths)
fileProcessor.cleanUpLocal(tempInput, tempOutput)
val remoteFiles = fileProcessor.checkRemote(bucketName, "new/" + file._2, filesNames)
logger.info("completed " + file._1)
}
}
spark config below
lazy val spark = SparkSession
.builder()
.appName("Project")
.config("spark.master", "local[*]")
.config("spark.sql.warehouse.dir", warehouseLocation)
.config("spark.executor.memory", "5g")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.enableHiveSupport()
.getOrCreate()
FYI: each function parsecsv function downloads 1 file into temporary folder and creates a dataframe in the specific folder. Files are of size 1GB. Also, I am trying to run this using java -cp jar class.
While I couldn't figure out the exact issue I tried to bypass the issue by passing only 38 files at a time by using the "List->grouped" method

TextFileStreaming in spark scala

I have many text file in local directory. Spark Program to read all the files and store it into database. For the moment, trying to read the files using text file stream not working.
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.dstream.DStream
/**
* Main Program
*/
object SparkMain extends App {
// Create a SparkContext to initialize Spark
val sparkConf: SparkConf =
new SparkConf()
.setMaster("local")
.setAppName("TestProgram")
// Create a spark streaming context with windows period 2 sec
val ssc: StreamingContext =
new StreamingContext(sparkConf, Seconds(2))
// Create text file stream
val sourceDir: String = "D:\\tmpDir"
val stream: DStream[String] = ssc.textFileStream(sourceDir)
case class TextLine(line: String)
val lineRdd: DStream[TextLine] = stream.map(TextLine)
lineRdd.foreachRDD(rdd => {
rdd.foreach(println)
})
// Start the computation
ssc.start()
// Wait for the computation to terminate
ssc.awaitTermination()
}
Input:
//1.txt
Hello World
Nothing print when stream the streaming. What is wrong in it?
TextFileStreaming does not read the file that is already present in the directory. Start the program and create a new file or move the file from any other directory. The following program is simple word count for text file streaming
val sourceDir: String = "path to streaming directory"
val stream: DStream[String] = streamingContext.textFileStream(sourceDir)
case class TextLine(line: String)
val lineRdd: DStream[TextLine] = stream.map(TextLine)
lineRdd.foreachRDD(rdd => {
val words = rdd.flatMap(rdd => rdd.line.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
println("=====================")
wordCounts.foreach(println)
println("=====================" + rdd.count())
})
The ouput should be something like this
+++++++++++++++++++++++
=====================0
+++++++++++++++++++++++
(are,1)
(you,1)
(how,1)
(hello,1)
(doing,1)
=====================5
+++++++++++++++++++++++
=====================0
I hope this helps!

Why saveAsTextFile do nothing?

I'm trying to implement simple WordCount in Scala + Spark. Here is my code
object FirstObject {
def main(args: Array[String]) {
val input = "/Data/input"
val conf = new SparkConf().setAppName("Simple Application")
.setMaster("spark://192.168.1.162:7077")
val sparkContext = new SparkContext(conf)
val text = sparkContext.textFile(input).cache()
val wordCounts = text.flatMap(line => line.split(" "))
.map(word => (word,1))
.reduceByKey((a,b) => a+b)
.sortByKey()
wordCounts.saveAsTextFile("/Data/output")
}
This job is working for 54s, and finally do nothing. Is is not writing output to /Data/output
Also if I replace saveAsTextFile with forEach(println) it is produce desired output.
You should check your user rights for /data/output folder.
This folder should have writing rights for your specific user.

Spark 1.1: saving RDD in HDFS with saveAsTextFile

I get the following error
Exception in thread "main" java.io.IOException: Not a file: hdfs://quickstart.cloudera:8020/user/cloudera/linkage/out1
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:320)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:180)
when launching the following command
spark-submit --class spark00.DataAnalysis1 --master local sproject1.jar linkage linkage/out1
The two last arguments (linkage and linkage/out1) are HDFS directories, the first contains several CSV files, the second doesn't exist, I assume that it will be automatically created.
The following code has been tested successfully with REPL (Spark 1.1, Scala 2.10.4), except of course the saveAsTextFile() part. I've followed the step-by-step method explained in O'Reilly's "Advanced Analytics with Spark" book.
Since it worked on REPL, I wanted to transpose this into a JAR file using Eclipse Juno, with the following code.
package spark00
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object DataAnalysis1 {
case class MatchData(id1: Int, id2: Int, scores: Array[Double], matched: Boolean)
def isHeader(line:String) = line.contains("id_1")
def toDouble(s:String) = {
if ("?".equals(s)) Double.NaN else s.toDouble
}
def parse(line:String) = {
val pieces = line.split(",")
val id1 = pieces(0).toInt
val id2 = pieces(1).toInt
val scores = pieces.slice(2, 11).map(toDouble)
val matched = pieces(11).toBoolean
MatchData(id1, id2, scores, matched)
}
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("DataAnalysis1")
val sc = new SparkContext(conf)
// Load our input data.
val rawblocks = sc.textFile(args(0))
// CLEAN-UP
// a. calling !isHeader(): suppress header
val noheader = rawblocks.filter(!isHeader(_))
// b. calling parse(): setting feature types and renaming headers
val parsed = noheader.map(line => parse(line))
// EXPORT CLEAN FILE
parsed.coalesce(1,true).saveAsTextFile(args(1))
}
}
As you can see args(0) should be "linkage" directory, and args(1) is actually the output HDFS directory linkage/out1 based on my spark-submit command above.
I've also tried the last line without coalesce(1,true)
Here's the official RDD type for parsed
parsed: org.apache.spark.rdd.RDD[(Int, Int, Array[Double], Boolean)] = MappedRDD[3] at map at <console>:34
Thank you in advance for your support
Nov 20th: I'm adding this simple Wordcount code that works well when running the spark-submit command the same way as for the code above. Thus, my question will be: why the saveAsTextFile() worked for this one and not the for other code ?
object SpWordCount {
def main(args: Array[String]) {
// Create a Scala Spark Context.
val conf = new SparkConf().setMaster("local").setAppName("wordCount")
val sc = new SparkContext(conf)
// Load our input data.
val input = sc.textFile(args(0))
// Split it up into words.
val words = input.flatMap(line => line.split(" "))
// Transform into word and count.
val counts = words.map(word => (word, 1)).reduceByKey{case (x, y) => x + y}
// Save the word count back out to a text file, causing evaluation.
counts.saveAsTextFile(args(1))
}
}