impoly only approximately correct on log-scale axes - matlab

When determining points within polygons using MATLAB's inpolygon function, I find that the results are exactly correct for polygons drawn on linear axes but only approximately correct for polygons drawn on log-scale axes. Although my suspicions lean in favor of a MATLAB bug, it's possible I've overlooked something.
The following code reproduces the issue I have been experiencing with other data. The results are shown in the following image (the bottom set of panels are zoomed views of the top panels). One can appreciate that there are unlabeled points inside the polygon and labeled points outside the polygon, neither of which should occur, in the case of a polygon drawn on log-scale axes (right). In contrast, the polygon test is exact for polygons drawn on linear axes (left).
n=2E4;
x(:,1)=rand(n,1); y(:,1)=rand(n,1);
x(:,2)=lognrnd(0.5,0.25,n,1); y(:,2)=lognrnd(0.5,0.25,n,1);
for m=1:2
subplot(1,2,m);
scatter(x(:,m),y(:,m),'.'); hold on;
if(m==2)
set(gca,'xscale','log'); set(gca,'yscale','log');
end
p=impoly(gca);
pc=getPosition(p);
in=inpolygon(x(:,m),y(:,m),pc(:,1),pc(:,2));
scatter(x(in,m),y(in,m),20);
end

I think you missed something: A line in normal scale is not a line in log scale. Your polygons are not properly drawn in the log scale, as you draw 2 points and put them together with a straight line.
Look at the real polygon in log space:
close all
clear
n=2e4;
x(:,1)=rand(n,1); y(:,1)=rand(n,1);
x(:,2)=lognrnd(0.5,0.25,n,1); y(:,2)=lognrnd(0.5,0.25,n,1);
for m=1:2
subplot(1,2,m);
scatter(x(:,m),y(:,m),'.'); hold on;
if(m==2)
set(gca,'xscale','log'); set(gca,'yscale','log');
end
p=impoly(gca);
pc=getPosition(p);
% plot polygon
hold on
for ii=1:size(pc,1)-1
plot(linspace(pc(ii,1),pc(ii+1,1),100),linspace(pc(ii,2),pc(ii+1,2),100),'g')
end
plot(linspace(pc(end,1),pc(1,1),100),linspace(pc(end,2),pc(1,2),100),'g')
in=inpolygon(x(:,m),y(:,m),pc(:,1),pc(:,2));
scatter(x(in,m),y(in,m),20);
end
Look at this zoomed in result (click to enlarge):
This happens because the polygon is defined in euclidean space, and it is defined as points linked by lines. If you want to work in log space, things may get complicated. One way to numerically approximate it is the inverse of what I did for plotting. Create dense enough sampled straight line on log space, convert it to linear space, and define a high vertex polygon with the resulting points. Then use inpolygon.

Related

Improve surface plot visualisation of scatter points

I want to visualize 4 vectors of scattered data with a surface plot. 3 vectors should be the coordinates. In addition the 4th vector should represent a surface color.
My first approach was to plot this data (xk,yk,zk,ck) using
scatHand = scatter3(xk,yk,zk,'*');
set(scatHand, 'CData', ck);
caxis([min(ck), max(ck)])
As a result I get scattered points of different color. As these points lie on the surface of a hemisphere it ist possible to get colored faces instead of just points. I replace the scattered points by a surface using griddata to first build an approximation
xk2=sort(unique(xk));
yk2=sort(unique(yk));
[xxk, yyk]=meshgrid(xk2, yk2);
zzk=griddata(xk,yk,zk,xxk,yyk,'cubic');
cck=griddata(xk,yk,clr,xxk,yyk,'cubic');
surf(xxk,yyk,zzk,cck);
shading flat;
This is already nearly what I want except that the bottom of the hemisphere is ragged. Of course if I increase the interpolation point numbers it gets better but than the handling of the plot gets also slow. So I wonder if there is an easy way to force the interpolation function to do a clear break. In addition it seems that the ragged border is because the value of zzk gets 'NaN' outside the circle the hemisphere shares with the z=0-plane.
The red points at the top are the first several entries of the original scattered data.
You can set the ZLim option to slice the plotted values within a certain range.
set(gca, 'Zlim', [min_value max_value])

How to draw 2D contour in MATLAB from a set of unsorted x-y coordinates in a non-rectangular domain

I have the electric potential value at a set of unsorted points. I know the x-y coordinates of all points and the mesh is like the following.
Now I want to draw the potential contour in the blue region. There is a similar problem here Matlab 2D contour using X-Y coordinate data. However, it only gives answer on how to draw this contour in a rectangular region, but what I need is to draw contours only in the blue region. Is there anybody who can help me with this? Thank you so much.
If we assume the size of the rectangular is Lx1 by Hy1 and the size of the right one is Lx2 by Hy2, the code I tried to connect two contours is as follows:
xdim1 = 0:dx:Lx1;
ydim1 = 0:dy:Hy1;
xdim2 = Lx1:dx:(Lx1+Lx2);
ydim2 = (Hy1-Hy2):dy:Hy1;
figure
contourf(xdim1, ydim1, phi1); %phi1 is the sorted potential value in this region
hold on
contourf(xdim2, ydim2, phi2); %phi2 is the sorted potential value in this region
hold off
However, this code failed. Is there any bugs in this piece of code?
Possible solution:
Thanks #Inox, #ysakamoto and #R. Schifini for their suggestions. I tried to assign the potential in the white rectangular region to be NaN and plot contour in the outermost rectangular region. The plots looks good.

area plot function

I've been trying to use the MATLAB 'area' plotting function (filled line plot) however when I plot with a log y-scale, the plot is just a line with no "fill". Am I missing something here?
My guess is that the y-coordinates of your area are very big. If you have a look to the log function, the values above 1 are heavily shrunk.
Thus, the y-side of your area goes from a segment to a point. If you try to zoom a lot in the y-axis, you may see the area as a rectangle instead of a line.

Rounded corner rectangle coordinate representation

Simple rounded corner rectangle code in Matlab can be written as follows.
rectangle('Position',[0,-1.37/2,3.75,1.37],...
'Curvature',[1],...
'LineWidth',1,'LineStyle','-')
daspect([1,1,1])
How to get the x and y coordinates arrays of this figure?
To get the axes units boundaries, do:
axisUnits = axis(axesHandle) % axesHandle could be gca
axisUnits will be an four elements array, with the following syntax: [xlowlim xhighlim ylowlim yhighlim], it will also contain the zlow and zhigh for 3-D plots.
But I think that is not what you need to know. Checking the matlab documentation for the rectangle properties, we find:
Position four-element vector [x,y,width,height]
Location and size of rectangle. Specifies the location and size of the
rectangle in the data units of the axes. The point defined by x, y
specifies one corner of the rectangle, and width and height define the
size in units along the x- and y-axes respectively.
It is also documented on the rectangle documentation:
rectangle('Position',[x,y,w,h]) draws the rectangle from the point x,y
and having a width of w and a height of h. Specify values in axes data
units.
See if this illustrate what you want. You have an x axis that goes from −100 to 100 and y axis that goes from 5 to 15. Suppose you want to put a rectangle from −30 to −20 in x and 8 to 10 in y.
rectangle('Position',[-30,8,10,2]);
As explained by the comments there appears to be no direct way to query the figure created by rectangle and extract x/y coordinates. On the other hand, I can think of two simple strategies to arrive at coordinates that will closely reproduce the curve generated with rectangle:
(1) Save the figure as an image (say .png) and process the image to extract points corresponding to the curve. Some degree of massaging is necessary but this is relatively straightforward if blunt and I expect the code to be somewhat slow at execution compared to getting data from an axes object.
(2) Write your own code to draw a rectangle with curved edges. While recreating precisely what matlab draws may not be so simple, you may be satisfied with your own version.
Whether you choose one of these approaches boils down to (a) what speed of execution you consider acceptable (b) how closely you need to replicate what rectangle draws on screen (c) whether you have image processing routines, say for reading an image file.
Edit
If you have the image processing toolbox you can arrive at a set of points representing the rectangle as follows:
h=rectangle('Position',[0,-1.37/2,3.75,1.37],...
'Curvature',[1],...
'LineWidth',1,'LineStyle','-')
daspect([1,1,1])
axis off
saveas(gca,'test.png');
im = imread('test.png');
im = rgb2gray(im);
figure, imshow(im)
Note that you will still need to apply a threshold to pick the relevant points from the image and then transform the coordinate system and rearrange the points in order to display properly as a connected set. You'll probably also want to tinker with resolution of the initial image file or apply image processing functions to get a smooth curve.

Evaluate straightness of an arbitrary countour

I want to get a metric of straightness of contour in my binary image (relatively faster). The image looks as follows:
Now, the contours in the red box are the ones which I would like to be removed preferably. Since they are not straight. These are the things I have tried. I am as of now implementing in MATLAB.
1.Collect row and column coordinates of each contour and then take derivative. For straight objects (such as rectangle), derivative will be mostly low with a few spikes (along the corners of the rectangle).
Problem: The coordinates collected are not in order i.e. the order in which the contour will be traversed if we imaging it as a path. Therefore, derivative gives absurdly high values sometimes. Also, the contour is not absolutely straight, its an output of edge detection algorithm, so you can imagine that there might be some discontinuity (see the rectangle at the bottom, human eye can understand that it is a rectangle though it is not absolutely straight).
2.Tried to think about polyfit, but again this contour issue comes up. Since its a rectangle I don't know how to apply polyfit to that point set.
Also, I would like to remove contours which are distributed vertically/horizontally. Basically this is a lane detection algorithm. So lanes cannot be absolutely vertical/horizontal.
Any ideas?
You should look into the features of regionprops more. To be fair I stole the script from this answer, but here it is:
BW = imread('lanes.png');
BW = im2bw(BW);
figure(1),
subplot(1,2,1);
imshow(BW);
cc = bwconncomp(BW);
l = labelmatrix(cc);
a_rp = regionprops(CC,'Area','MajorAxisLength','MinorAxislength','Orientation','PixelList','Eccentricity');
idx = ([a_rp.Eccentricity] > 0.99 & [a_rp.Area] > 100 & [a_rp.Orientation] < 70 & [a_rp.Orientation] > -90);
BW2 = ismember(l,find(idx));
subplot(1,2,2);
imshow(BW2);
You can mess around with the properties. 'Orientation', 'Eccentricity', and 'Area' are probably the parameters you want to mess with. I also messed with the ratios of the major/minor axis lengths but eccentricity basically does this (eccentricity is a measure of how "circular" an ellipse is). Here's the output:
I actually saw a good video specifically from matlab for lane detection using regionprops. I'll try to see if I can find it and link it.
You can segment your image using bwlabel, then work separately on each bwlabel connected object, using find. This should help solve your order problem.
About a metric, the only thing that come to mind at the moment is to fit to an ellipse, and set the a/b (major axis/minor axis) ratio (basically eccentricity) a parameter. For example a straight line (even if not perfect) will be fitted to an ellipse with a very big major axis and a very small minor axis. So say you set a ratio threshold of >10 etc... Fitting to an ellipse can be done using this FEX submission for example.