Sharing of JWT Tokens - jwt

I've got an instance of IdentityServer4, an Angular SPA, a webserver, and an api service on another network. What are the security implications of having a JWT that is stored on the client side, and used to authenticate to the webserver calls and passed down to the api service for auth as well. The SPA never calls the api service directly, everything is proxied through the webserver. Is there an other preferred mechanism for this?

This is a really good answer to this perennial question about access tokens stored somewhere in the client-side JS application: https://stackoverflow.com/a/41189419/1395123

Related

Pass Cognito User Info to HTTP Integration

I've been exploring utilizing Cognito User Pools for authentication and API Gateway to feed client requests with auth tokens. I'd basically like to have a simple react app that utilizes the cognito sdk for authentication. Then use the authentication to make requests via the API Gateway to an express application, hooked up to cognito user pool auth. It would be ideal to have user information available in the express app - seems pretty simple to me.
I've seen many articles and forum posts about how to retrieve Cognito User Info in the context of a lambda function but nothing about how to retrieve Cognito User Info in the context of an HTTP Integration.
Is this possible?
Yes, it is possible, and can be achieved in, at least, two ways:
Proxying requests with original headers
If you enable "Use HTTP Proxy integration" in your HTTP integration, the API Gateway will act as a proxy and forward any headers in the request to the backend (and same from the backend response back to the client). This means that the JWT will reach the express application in the same header the client sent it, where it can be decoded and the claim(s) retrieved.
Using request [and response] data mappings
Another way is to pass the required claim(s) in the Path/QueryString/Headers mappings for the Integration Request, using context.authorizer.claims.{claim} in the mapping, e.g. context.authorizer.claims.email. You can see the documentation on setting up the data mappings and also the mapping reference for more variables that can be used. Please note that for context variables the right syntax to use is without the $ prefix.

How to perform user registration and authentication between a single page application and a REST API with OpenID Connect

Consider that we have:
An SPA or a statically generated JAMStack website.
A REST API.
The website is being served with nignx that also reverse proxies to our API.
--
It is required that a user should be able to register/authenticate with an identity provider (say, Google) through the OpenID Connect protocol. For the sake of simplicity, let us assume that the user has already registered with our API.
Talking about authentication using OIDC, from what I have read on the subject, the steps you take are the following:
Register the application with the IdP and receive a client id and a secret.
When the user initiates a login (with Google) request on the API ('/api/loginWithGoogle') the API sets a state variable on the request session (to prevent CSRF) and redirects the user-agent to the IdP's login page.
At this page, the user enters their credentials and if they are correct, the IdP redirects the user to the callback URL on the API callback (/api/callback).
The request received on the callback has the state parameter (which we should verify with the one we set on the session previously) and a code parameter. We exchange the code for the identity token with the authorization server/IdP (we also receive access/refresh tokens from the auth server, which we discard for now because we do not want to access any APIs on the behalf of the user).
The identity token is parsed to verify user identity against our database (maybe an email).
Assume that the identity is verified.
-- The next part is what's giving me trouble --
The documentation that I have read advises that from here we redirect the user to a URL (e.g. the profile page)and start a login session between the user agent and the API. This is fine for this specific architecture (with both the SPA/static-site being hosted on the same domain).
But how does it scale?
Say I want to move from a session based flow to a JWT based flow (for authenticating to my API).
What if a mobile application comes into the picture? How can it leverage a similar SSO functionality from my API?
NOTE: I have read a little on the PKCE mechanism for SPAs (I assume it works for JAMStack as well) and native mobile apps, but from what I gather, it is an authorization mechanism that assumes that there is no back-end in place. I can not reconcile PKCE in an authentication context when an API is involved.
Usually this is done via the following components. By separating these concerns you can ensure that flows work well for all of your apps and APIs.
BACKEND FOR FRONTEND
This is a utility API to keep tokens for the SPA out of the browser and to supply the client secret to the token service.
WEB HOST
This serves unsecured static content for the SPA. It is possible to use the BFF to do this, though a separated component allows you to serve content via a content delivery network, which some companies prefer.
TOKEN SERVICE
This does the issuing of tokens for your apps and APIs. You could use Google initially, though a more complete solution is to use your own Authorization Server (AS). This is because you will not be able to control the contents of Google access tokens when authorizating in your own APIs.
SPA CLIENT
This interacts with the Backend for Frontend during OAuth and API calls. Cookies are sent from the browser and the backend forwards tokens to APIs.
MOBILE CLIENT
This interacts with the token service and uses tokens to call APIs directly, without using a Backend for Frontend.
BUSINESS APIs
These only ever receive JWT access tokens and do not deal with any cookie concerns. APIs can be hosted in any domain.
SCALING
In order for cookies to work properly, a separate instance of the Backend for Frontend must be deployed for each SPA, where each instance runs on the same parent domain as the SPA's web origin.
UPDATE - AS REQUESTED
The backend for frontend can be either a traditional web backend or an API. In the latter case CORS is used.
See this code example for an API driven approach. Any Authorization Server can be used as the token service. Following the tutorial may help you to see how the components fit together. SPA security is a difficult topic though.

How to protect bearer tokens in a web app

I am trying to implement the Authorization Code flow described in RFC 6749 (OAuth 2.0) for a JavaScript-based application. I understand that I should use a web server back-end as a confidential client so that it can protect the access token and refresh token returned by the authorization server and not pass them on to the JavaScript front-end. Then all requests from the front-end to any protected resources go via the web server back-end, which attaches the access token to the request and proxies it on.
My question is how do I let the JavaScript front-end make use of these tokens in a secure way? I assume that I have to do something like set up a session on the web server and pass back a cookie that identifies the session. But this means that the JavaScript application then has a cookie that gives them the same privileges as if they just had direct access to the bearer tokens stored in the web server. How does having a web server to hold the tokens give extra security?
I understand that I should use a web server back-end as a confidential client so that it can protect the access token and refresh token returned by the authorization server and not pass them on to the JavaScript front-end.
No, it is a misunderstanding of the OAuth2 flows and goals.
Here is the OAuth2 main goal: your application (which can for instance be a JavaScript program running in the browser, a web server, both, etc.) MUST NOT need to know the user's credentials (most of the time a login/password pair) to access the service on behalf of the user.
Here is the way OAuth2 must be used to achieve this goal:
according to your needs, that is having a Javascript-based application running in the browser (i.e. not a node.js application), you need to use the OAuth2 implicit flow, not the authorization code flow. But of course, because your application is running in the browser, it will not be able to persist the credentials to access the resource offered by the service provider. The user will have to authenticate to the service provider for each new session on your application.
when your application needs to access the service provider when the user is not logged in, or when your application is able to persist credentials (because your application has its own credential system to identify its users), your application does not only rely on a JavaScript program running in the browser. It may rely only on a web server, or on both a web server and a JavaScript program that talks to this server. So, in those cases, you must use the authorization code flow.
So, as a conclusion, you have decided to add a web server to your application because you thought you had to use the authorization code flow. But in your case, you probably do not have to use this code flow, therefore you should select the appropriate code flow for your application: implicit code flow. And this way, you do not have to add a web server to run your application.
How does having a web server to hold the tokens give extra security?
This does not give extra security. Having a web server to hold the tokens is simply a way to let your application access the service on behalf of the user, in the background, when the user is not logged on your application.
While I agree with Alexandre Fenyo's comments, I just want to add the 2021 version. You should no longer be using the implicit flow as this is no longer considered secure.
For scenarios such as this where a JavaScript application has to handle tokens I would suggest using the Authorization Code flow with PKCE instead: https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce

Authentication with Akka-Http

We're developing an iOS app, where the user needs to authenticate using email+password (or mobile number). Our backend is made of a couple of microservices using Akka-Http. It needs to be fast, scalable, concurrent, and the authentication+authorization should work across our multiple services.
I'm trying to figure out which authentication method to use.
Akka-HTTP currently offers Basic Auth and a partial implementation of OAuth2.
So at first we were considering Basic authentication (too simple and not enough functionality), Oauth1 (too complex), so we moved towards OAuth-2.0 because it is sort of a standard.
Then we considered AWS Cognito because it combines Oauth-2.0 and OpenID Connect which gives the authentication mechanism that OAuth2 lacks.
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
Then we realised that OAuth2 is just for authentication using a third party - when in fact we don't need a third party authentication provider - maybe we need to do it ourselves, and using Cognito is an overkill that would create extra api calls outside our microservices...
So I read a little bit about creating our own custom auth provider, using WSSE specs:
http://symfony.com/doc/current/cookbook/security/custom_authentication_provider.html
And I also found this example using Spray, but I'm sure it's not that different from Akka-Http:
http://danielasfregola.com/2015/06/29/how-to-create-a-spray-custom-authenticator/
It looks too simplified and doesn't have token expiration...
So my question is, am I missing something? What method should I chose and where can I find examples for it?
I feel like I'm going in circles, we're gonna have to write our own custom authentication provider from scratch, which kinda doesn't make sense. After all almost everybody needs authentication and it should be a standard.
I've recently been using SoftwareMill's akka-http-session library and found it simple and easy to integrate. It has support for case class based sessions, JWTs, refresh tokens with pluggable storage, using headers and CSRF tokens as well as some nice simple directives for use in routes.
My solution for user registration has been to use Keycloak, an open source server which can handle user registration and do OIDC, OAuth2 style login. It reduces the amount of code I have to write, and the code is more secure than if it rolled it myself.
I then write my application as Scala backend that's purely a JSON API and a React/Javascript rich frontend in front of that API. In this configuration the authentication is handled completely on the front-end (and can be done in your iOS client). The front-end app redirects the user to Keycloak and when the user comes back they have a signed "JWT" token you can keep in a cookie.
That JWT token is attached to all API calls made the JSON backend as an Authorization Bearer token HTTP header. The token itself contains the users email address and is cryptographically signed by the Keycloak server.
The backend gets the JWT token in the HTTP header, extracts the email address and verifies the token is cryptographically signed by the keycloak server.
It's performing a certificate check on the keycloak server and can cache it's certificate. So it doesn't need to have roundtrips like OAuth, or any upstream calls to make.
This gives us simple, low-chance-of-failure, high speed authorisation in our JSON backend API and means we aren't putting secrets in the iOS client, or rolling too much of our own code.

Accessing REST APIs secured using OAUTH

I have a set of REST APIs that are secured by oauth 2. I need to access them from an Android app and a webapp.
Accessing the APIs from android app seems pretty straight forward for me to implement. What I am unable to understand here is - what is the correct and secure way to access the same APIs from a webapp?
I am thinking, I shouldn't be making any direct calls to the APIs from the browser, using some JS library, for it seems to me that it would be pretty insecure. Instead, I should keep it all traditional, by submitting requests to the web server and then letting it make the REST API call. This would be similar to the method of making REST calls from Android.
Am I correct in my thinking/approach?
Accessing your API should be the same no matter where the request is coming from. You just use an Authorization header with bearer scheme and stick the JWT token in there.
The way you get the JWT token is different though, as I explain in this answer. It all depends on how much you trust the client application.
If your client is a web application that queries your API from the server side, you can use the code authorization grant and get an access and refresh token for your API.
If you want to access your API from a JavaScript application, you have no way to hide app-keys or refresh tokens, so you should use the implicit grant.
If you know how to store secrets securely on your Android client, you could use the resource owner password grant.
The code authorization grant is definitively the most secure as it's much harder to compromise a server application than an application that runs on your machine.