Tell IPython to use an object's `__str__` instead of `__repr__` for output - ipython

By default, when IPython displays an object, it seems to use __repr__.
__repr__ is supposed to produce a unique string which could be used to reconstruct an object, given the right environment.
This is distinct from __str__, which supposed to produce human-readable output.
Now suppose we've written a particular class and we'd like IPython to produce human readable output by default (i.e. without explicitly calling print or __str__).
We don't want to fudge it by making our class's __repr__ do __str__'s job.
That would be breaking the rules.
Is there a way to tell IPython to invoke __str__ by default for a particular class?

This is certainly possible; you just need implement the instance method _repr_pretty_(self). This is described in the documentation for IPython.lib.pretty. Its implementation could look something like this:
class MyObject:
def _repr_pretty_(self, p, cycle):
p.text(str(self) if not cycle else '...')
The p parameter is an instance of IPython.lib.pretty.PrettyPrinter, whose methods you should use to output the text representation of the object you're formatting. Usually you will use p.text(text) which just adds the given text verbatim to the formatted representation, but you can do things like starting and ending groups if your class represents a collection.
The cycle parameter is a boolean that indicates whether a reference cycle is detected - that is, whether you're trying to format the object twice in the same call stack (which leads to an infinite loop). It may or may not be necessary to consider it depending on what kind of object you're using, but it doesn't hurt.
As a bonus, if you want to do this for a class whose code you don't have access to (or, more accurately, don't want to) modify, or if you just want to make a temporary change for testing, you can use the IPython display formatter's for_type method, as shown in this example of customizing int display. In your case, you would use
get_ipython().display_formatter.formatters['text/plain'].for_type(
MyObject,
lambda obj, p, cycle: p.text(str(obj) if not cycle else '...')
)
with MyObject of course representing the type you want to customize the printing of. Note that the lambda function carries the same signature as _repr_pretty_, and works the same way.

Related

MATLAB set class `size` (overload operation upon class)

classdef Dog
end
d=Dog(); can size(d) be controlled? Is there some property to set or method to overload?
Ultimately I have like d.data = [1, 2, 3] and want length(d) == 3. I'm aware I can make d.length(). As an aside, is there a list of MATLAB "magic methods", i.e. functions that control interaction with classes, like subsref?
In MATLAB, don't think of class method as similar to class methods in other languages. Really, what they are is overloaded versions of a function.
size(d) is the same as d.size() (which is the same as d.size, parentheses are not needed to call a function), if d is an object of a custom class and size is overloaded for that class.
So, you can define function size in the methods section of your classdef, to overload size for your class. You can also create a size.m file within a #Dog/ directory to accomplish the same thing.
For example, if you create a file #char/size.m with a function definition inside, you will have overloaded size for char arrays.
The above is true for any function. Some functions, when overloaded, can cause headaches. For example be careful when overloading numel, as it could cause indexed assignment expressions to fail. size is used by the whos command to display variable information, as well as by the similar functionality in the GUI, so it is important to have it behave in the expected way.
The object behavior that you might want to change that is not obviously a function, relates to operators. Each operator is also defined by a function (including end in indexing!). See the docs for a full list.

What is the difference between ByRef and Output method argument modifiers?

All is in the subject, really.
I fail to see what the difference in behavior is between those two methods for x:
// first version
Method m(ByRef x As whatever)
{
// play with x
}
// second version
Method m(Output x As whatever)
{
// play with x
}
There must be some reason why both those modifiers exist, however my "mastery" (uhm) of the language is not enough to understand the difference. I have tried and read the documentation, search it etc, to no avail so far.
So, what is the difference between those two argument modifiers?
Well those are just "prettifiers", they don't do much in terms of actual language behaviour, and only used to provide documentation. Idea is that arguments documented as ByRef provide both input and output, for example you can pass an array to be sorted, and Output arguments only provide output, for example list of errors. Output modifier was introduced later, and a lot of system code still use ByRef for both use cases.
If argument is actually passed by reference is only determined by method caller, and keyword doesn't really matter. You will call your method as ..m(.parameter) to pass variable by reference, and ..m(parameter) to pass variable by value.

Why some variable of struct take preprocessor to function?

Variables of struct declared by data type of language in the header file. Usually data type using to declare variables, but other data type pass to preprocessors. When we should use to a data type send to preprocessor for declare variables? Why data type and variables send to processor?
#define DECLARE_REFERENCE(type, name) \
union { type name; int64_t name##_; }
typedef struct _STRING
{
int32_t flags;
int32_t length;
DECLARE_REFERENCE(char*, identifier);
DECLARE_REFERENCE(uint8_t*, string);
DECLARE_REFERENCE(uint8_t*, mask);
DECLARE_REFERENCE(MATCH*, matches_list_head);
DECLARE_REFERENCE(MATCH*, matches_list_tail);
REGEXP re;
} STRING;
Why this code is doing this for declarations? Because as the body of DECLARE_REFERENCE shows, when a type and name are passed to this macro it does more than just the declaration - it builds something else out of the name as well, for some other unknown purpose. If you only wanted to declare a variable, you wouldn't do this - it does something distinct from simply declaring one variable.
What it actually does? The unions that the macro declares provide a second name for accessing the same space as a different type. In this case you can get at the references themselves, or also at an unconverted integer representation of their bit pattern. Assuming that int64_t is the same size as a pointer on the target, anyway.
Using a macro for this potentially serves several purposes I can think of off the bat:
Saves keystrokes
Makes the code more readable - but only to people who already know what the macros mean
If the secondary way of getting at reference data is only used for debugging purposes, it can be disabled easily for a release build, generating compiler errors on any surviving debug code
It enforces the secondary status of the access path, hiding it from people who just want to see what's contained in the struct and its formal interface
Should you do this? No. This does more than just declare variables, it also does something else, and that other thing is clearly specific to the gory internals of the rest of the containing program. Without seeing the rest of the program we may never fully understand the rest of what it does.
When you need to do something specific to the internals of your program, you'll (hopefully) know when it's time to invent your own thing-like-this (most likely never); but don't copy others.
So the overall lesson here is to identify places where people aren't writing in straightforward C, but are coding to their particular application, and to separate those two, and not take quirks from a specific program as guidelines for the language as a whole.
Sometimes it is necessary to have a number of declarations which are guaranteed to have some relationship to each other. Some simple kinds of relationships such as constants that need to be numbered consecutively can be handled using enum declarations, but some applications require more complex relationships that the compiler can't handle directly. For example, one might wish to have a set of enum values and a set of string literals and ensure that they remain in sync with each other. If one declares something like:
#define GENERATE_STATE_ENUM_LIST \
ENUM_LIST_ITEM(STATE_DEFAULT, "Default") \
ENUM_LIST_ITEM(STATE_INIT, "Initializing") \
ENUM_LIST_ITEM(STATE_READY, "Ready") \
ENUM_LIST_ITEM(STATE_SLEEPING, "Sleeping") \
ENUM_LIST_ITEM(STATE_REQ_SYNC, "Starting synchronization") \
// This line should be left blank except for this comment
Then code can use the GENERATE_STATE_ENUM_LIST macro both to declare an enum type and a string array, and ensure that even if items are added or removed from the list each string will match up with its proper enum value. By contrast, if the array and enum declarations were separate, adding a new state to one but not the other could cause the values to get "out of sync".
I'm not sure what the purpose the macros in your particular case, but the pattern can sometimes be a reasonable one. The biggest 'question' is whether it's better to (ab)use the C preprocessor so as to allow such relationships to be expressed in valid-but-ugly C code, or whether it would be better to use some other tool to take a list of states and would generate the appropriate C code from that.

Can we say that using "pass by reference" is always better than "pass by value"?

In C# or php or other languages, there are 2 ways to pass a value to a function, pass it by value and pass it by referece.
Pass parameter by value make the value copied in the function, so this need a extra memory space although the memory space will be reclaimed after running outside the function.
But passing parameter by reference no need to copy a value, it's save the memory. From this perspective, can we say that using "pass by reference" is always better than "pass by value"?
Pass by reference and pass by value are semantically different and sometimes one is correct approach and sometimes the other one is. In many cases the task at hand already prescribes which approach is needed and in contexts where only one option is supported you often need to manually work around it (e.g., if you need a copy in Java you'll need to clone() the object).
In the context of generic functions the answer is rather the opposite way of your proposed preference: pass arguments of deduced type by value! The reason is that you can use something like std::ref() to obtain reference semantics but there is no way to get value semantics if the functions use reference semantics.
No.
There are tons of cases where you'd want to pass by value.
An example might be when you need both const Type& and Type&& overloads. Passing by value just handles both cases without having to duplicate any code:
void function(Object o) { do_something_with(std::move(o)); }
As opposed to:
void function(Object&& o) { do_something_with(std::move(o)); }
void function(const Object& o) { do_something_with(Object(o)); }
Of course there is much more to the subject, but since you're only asking for "is it always better?" I feel a single disproving example is enough. ;)
Edit: the question was originally tagged c++ hence my very specific answer.
Another, more language-agnostic example would be when you need to make a copy of your parameter because you don't want to modify the original object:
void function(int& val) { int v2 = val; modify(v2); use(v2); }
// vs
void function(int val) { modify(val); use(val); }
You get the idea...
Pass by reference requires copying a reference to the object. If that reference is comparable in cost to the object itself, then the benefit is illusory. Also, sometimes you need a copy of the object, and passing by value provides you one.
Also, there's a key error in the reasoning in the question. If passing by value, and there is no need to copy the value, nothing requires that the value actually be copied. Most languages have an "as-if" rule that states that the program only has to act as if the compiler did what you ask for. So if the copy can be avoided, the compiler is free to avoid it. If the copy can't be avoided, then you needed the copy.

In Scala is there any way to get a parameter's method name and class?

At my work we use a typical heavy enterprise stack of Hibernate, Spring, and JSF to handle our application, but after learning Scala I've wanted to try to replicate much of our functionality within a more minimal Scala stack (Squeryl, Scalatra, Scalate) to see if I can decrease code and improve performance (an Achilles heal for us right now).
Often my way of doing things is influenced by our previous stack, so I'm open to advice on a way of doing things that are closer to Scala paradigms. However, I've chosen some of what I do based on previous paradigms we have in the Java code base so that other team members will hopefully be more receptive to the work I'm doing. But here is my question:
We have a domain class like so:
class Person(var firstName: String, var lastName: String)
Within a jade template I make a call like:
.section
- view(fields)
The backing class has a list of fields like so:
class PersonBean(val person: Person) {
val fields: Fields = Fields(person,
List(
Text(person.firstName),
Text(person.lastName)
))
}
Fields has a base object (person) and a list of Field objects. Its template prints all its fields templates. Text extends Field and its Jade template is supposed to print:
<label for="person:firstName">#{label}</label>: <input type="text" id="person:firstName" value="#{value}" />
Now the #{value} is simply a call to person.firstName. However, to find out the label I reference a ResourceBundle and need to produce a string key. I was thinking of using a naming convention like:
person.firstName.field=First Name
So the problem then becomes, how can I within the Text class (or parent Field class) discover what the parameter being passed in is? Is there a way I can pass in person.firstName and find that it is calling firstName on class Person? And finally, am I going about this completely wrong?
If you want to take a walk on the wild side, there's a (hidden) API in Scala that allows you to grab the syntax tree for a thunk of code - at runtime.
This incantation goes something like:
scala.reflect.Code.lift(f).tree
This should contain all the information you need, and then some, but you'll have your work cut out interpreting the output.
You can also read a bit more on the subject here: Can I get AST from live scala code?
Be warned though... It's rightly classified as experimental, do this at your own risk!
You can never do this anywhere from within Java, so I'm not wholly clear as to how you are just following the idiom you are used to. The obvious reason that this is not possible is that Java is pass-by-value. So in:
public void foo(String s) { ... }
There is no sense that the parameter s is anything other than what it is. It is not person.firstName just because you called foo like:
foo(person.firstName);
Because person.firstName and s are completely separate references!
What you could do is replacing the fields (e.g. firstname) with actual objects, which have a name attribute.
I did something similiar in a recent blog post:http://blog.schauderhaft.de/2011/05/01/binding-scala-objects-to-swing-components/
The property doesn't have a name property (yet), but it is a full object but is still just as easy to use as a field.
I would not be very surprised if the following is complete nonsense:
Make the parameter type of type A that gets passed in not A but Context[A]
create an implicit that turns any A into a Context[A] and while doing so captures the value of the parameter in a call-by-name parameter
then use reflection to inspect the call-by-name parameter that gets passed in
For this to work, you'd need very specific knowledge of how stuff gets turned into call-by-name functions; and how to extract the information you want (if it's present at all).