I'll use Cloudant to store some documents returned from an API, how can I estimate the approximate space needed by document, here is a sample document:
{
"document_tone": {
"tone_categories": [
{
"tones": [
{
"score": 0.25482,
"tone_id": "anger",
"tone_name": "Anger"
},
{
"score": 0.345816,
"tone_id": "disgust",
"tone_name": "Disgust"
},
{
"score": 0.121116,
"tone_id": "fear",
"tone_name": "Fear"
},
{
"score": 0.078903,
"tone_id": "joy",
"tone_name": "Joy"
},
{
"score": 0.199345,
"tone_id": "sadness",
"tone_name": "Sadness"
}
],
"category_id": "emotion_tone",
"category_name": "Emotion Tone"
}
]
}
}
Thank you
If you save your json in a file, you could try something like
cat file.json | jq --compact-output '' | wc -c
which says that the file above is about 398 chars. In Cloudant you also may incur index space, depending on your setup.
Moreover, you can make a GET request against https://$USERNAME.cloudant.com/$DATABASE it will return details about the database for your accurate estimation. More information can be found here: https://docs.cloudant.com/database.html#read
Related
I am trying to fetch sessions from GA4 which are relevant to specific UTM params.
In GA3 we were able to use segments (sessions::condition::ga:source==X;ga:medium==Y) but I can not find a way to do this on GA4.
POST https://analyticsdata.googleapis.com/v1beta/#{property}:runReport`
Payload like this:
body = {
"metrics": [
{
"name": "sessions::condition::ga:source==X;ga:medium==Y"
}
],
"dimensions": [
{
"name": "date"
}
],
"dateRanges": [
{
"startDate": '2022-01-01',
"endDate": '2022-01-30',
"name": "current_year"
}
]
}
Returns: Field sessions::condition::ga:source==X;ga:medium==Y is not a valid metric.. Is there a way to do this via new API?
Should I use dimension filter to achieve that? I need to query on both source&medium but it is not clear how do I do this?
"dimensionFilter": {
"filter": {
"fieldName": "firstUserMedium",
"stringFilter": {
"value": "Y"
}
}
}
A dimension filter on sessionSource & sessionMedium returns sessions that have those specific utm_source & utm_medium values. See the dimensions & metrics page for a description of these and other dimensions & metrics.
The needed dimension filter is similar to the following. See Dimension Filters in Creating a Report for more info.
"dimensionFilter": {
"andGroup": {
"expressions": [
{
"filter": {
"fieldName": "sessionSource",
"stringFilter": {
"value": "X"
}
}
},
{
"filter": {
"fieldName": "sessionMedium",
"stringFilter": {
"value": "Y"
}
}
}
]
}
},
Segments are not yet available today in the GA4 Data API.
I think you should check the dimensions and metrcis list for GA4 they dont start with ga
POST https://analyticsdata.googleapis.com/v1beta/properties/GA4_PROPERTY_ID:runReport
{
"dateRanges": [{ "startDate": "2020-09-01", "endDate": "2020-09-15" }],
"dimensions": [{ "name": "country" }],
"metrics": [{ "name": "activeUsers" }]
}
Also at this time i don't think it supports segments.
I have a collection with the following documents (for example):
{
"_id": {
"$oid": "61acefe999e03b9324czzzzz"
},
"matchId": {
"$oid": "61a392cc54e3752cc71zzzzz"
},
"logs": [
{
"actionType": "CREATE",
"data": {
"talent": {
"talentId": "qq",
"talentVersion": "2.10",
"firstName": "Joelle",
"lastName": "Doe",
"socialLinks": [
{
"type": "FACEBOOK",
"url": "https://www.facebook.com"
},
{
"type": "LINKEDIN",
"url": "https://www.linkedin.com"
}
],
"webResults": [
{
"type": "VIDEO",
"date": "2021-11-28T14:31:40.728Z",
"link": "http://placeimg.com/640/480",
"title": "Et necessitatibus",
"platform": "Repellendus"
}
]
},
"createdBy": "DEVELOPER"
}
},
{
"actionType": "UPDATE",
"data": {
"talent": {
"firstName": "Joelle new",
"webResults": [
{
"type": "VIDEO",
"date": "2021-11-28T14:31:40.728Z",
"link": "http://placeimg.com/640/480",
"title": "Et necessitatibus",
"platform": "Repellendus"
}
]
}
}
}
]
},
{
"_id": {
"$oid": "61acefe999e03b9324caaaaa"
},
"matchId": {
"$oid": "61a392cc54e3752cc71zzzzz"
},
"logs": [....]
}
a brief breakdown: I have many objects like this one in the collection. they are a kind of an audit log for actions takes on other documents, 'Match(es)'. for example CREATE + the data, UPDATE + the data, etc.
As you can see, logs field of the document is an array of objects, each describing one of these actions.
data for each action may or may not contain specific fields, that in turn can also be an array of objects: socialLinks and webResults.
I'm trying to remove sensitive data from all of these documents with specified Match ids.
For each document, I want to go over the logs array field, and change the value of specific fields only if they exist, for example: change firstName to *****, same for lastName, if those appear. also, go over the socialLinks array if exists, and for each element inside it, if a field url exists, change it to ***** as well.
What I've tried so far are many minor variations for this query:
$set: {
'logs.$[].data.talent.socialLinks.$[].url': '*****',
'logs.$[].data.talent.webResults.$[].link': '*****',
'logs.$[].data.talent.webResults.$[].title': '*****',
'logs.$[].data.talent.firstName': '*****',
'logs.$[].data.talent.lastName': '*****',
},
and some play around with this kind of aggregation query:
[{
$set: {
'talent.socialLinks.$[el].url': {
$cond: [{ $ne: ['el.url', null] },'*****', undefined],
},
},
}]
resulting in errors like: message: "The path 'logs.0.data.talent.socialLinks' must exist in the document in order to apply array updates.",
But I just cant get it to work... :(
Would love an explanation on how to exactly achieve this kind of set-only-if-exists behaviour.
A working example would also be much appreciated, thx.
Would suggest using $\[<indentifier>\] (filtered positional operator) and arrayFilters to update the nested document(s) in the array field.
In arrayFilters, with $exists to check the existence of the certain document which matches the condition and to be updated.
db.collection.update({},
{
$set: {
"logs.$[a].data.talent.socialLinks.$[].url": "*****",
"logs.$[b].data.talent.webResults.$[].link": "*****",
"logs.$[b].data.talent.webResults.$[].title": "*****",
"logs.$[c].data.talent.firstName": "*****",
"logs.$[d].data.talent.lastName": "*****",
}
},
{
arrayFilters: [
{
"a.data.talent.socialLinks": {
$exists: true
}
},
{
"b.data.talent.webResults": {
$exists: true
}
},
{
"c.data.talent.firstName": {
$exists: true
}
},
{
"d.data.talent.lastName": {
$exists: true
}
}
]
})
Sample Mongo Playground
let's say I have a collection like so:
{
"id": "2902-48239-42389-83294",
"data": {
"location": [
{
"country": "Italy",
"city": "Rome"
}
],
"time": [
{
"timestamp": "1626298659",
"data":"2020-12-24 09:42:30"
}
],
"details": [
{
"timestamp": "1626298659",
"data": {
"url": "https://example.com",
"name": "John Doe",
"email": "john#doe.com"
}
},
{
"timestamp": "1626298652",
"data": {
"url": "https://www.myexample.com",
"name": "John Doe",
"email": "doe#john.com"
}
},
{
"timestamp": "1626298652",
"data": {
"url": "http://example.com/sub/directory",
"name": "John Doe",
"email": "doe#johnson.com"
}
}
]
}
}
Now the main focus is on the array of subdocument("data.details"): I want to get output only of relevant matches e.g:
db.info.find({"data.details.data.url": "example.com"})
How can I get a match for all "data.details.data.url" contains "example.com" but won't match with "myexample.com". When I do it with $regex I get too many results, so if I query for "example.com" it also return "myexample.com"
Even when I do get partial results (with $match), It's very slow. I tried this aggregation stages:
{ $unwind: "$data.details" },
{
$match: {
"data.details.data.url": /.*example.com.*/,
},
},
{
$project: {
id: 1,
"data.details.data.url": 1,
"data.details.data.email": 1,
},
},
I really don't understand the pattern, with $match, sometimes Mongo do recognize prefixes like "https://" or "https://www." and sometime it does not.
More info:
My collection has dozens of GB, I created two indexes:
Compound like so:
"data.details.data.url": 1,
"data.details.data.email": 1
Text Index:
"data.details.data.url": "text",
"data.details.data.email": "text"
It did improve the query performance but not enough and I still have this issue with the $match vs $regex. Thanks for helpers!
Your mistake is in the regex. It matches all URLs because the substring example.com is in all URLs. For example: https://www.myexample.com matches the bolded part.
To avoid this you have to use another regex, for example that just start with that domain.
For example:
(http[s]?:\/\/|www\.)YOUR_SEARCH
will check that what you are searching for is behind an http:// or www. marks.
https://regex101.com/r/M4OLw1/1
I leave you the full query.
[
{
'$unwind': {
'path': '$data.details'
}
}, {
'$match': {
'data.details.data.url': /(http[s]?:\/\/|www\.)example\.com/)
}
}
]
Note: you must scape special characters from the regex. A dot matches any character and the slash will close your regex causing an error.
Here i want to update a given document as below
{
"emailid": "xxx.gmail",
"user_devices": [],
"devices": [{
"created_time": 1607153351,
"token": 123
},
{
"created_time": 1807153371,
"token": 1345
}]
}
here i need to update field devices with the token of 1345 with a new field like "Newfield":"newfield" where the final output would look like as below
{
"emailid": "xxx.gmail",
"user_devices": [],
"devices": [{
"created_time": 1607153351,
"token": 123
},
{
"created_time": 1807153371,
"token": 1345,
"Newfield":"newfield"
}]
}
How to update the mongo db like this. Thanks in advance for your answers.
db.products.update({
"devices.token": 1345 //Matching condition
},
{
$set: {
"devices.$.t": 2 //Updates the matched element in the array
}
})
you can do it using positional operator - Reference
I'm new to Elastic Search and to the non-SQL paradigm.
I've been following ES tutorial, but there is one thing I couldn't put to work.
In the following code (I'me using PyES to interact with ES) I create a single document, with a nested field (subjects), that contains another nested field (concepts).
from pyes import *
conn = ES('127.0.0.1:9200') # Use HTTP
# Delete and Create a new index.
conn.indices.delete_index("documents-index")
conn.create_index("documents-index")
# Create a single document.
document = {
"docid": 123456789,
"title": "This is the doc title.",
"description": "This is the doc description.",
"datepublished": 2005,
"author": ["Joe", "John", "Charles"],
"subjects": [{
"subjectname": 'subject1',
"subjectid": [210, 311, 1012, 784, 568],
"subjectkey": 2,
"concepts": [
{"name": "concept1", "score": 75},
{"name": "concept2", "score": 55}
]
},
{
"subjectname": 'subject2',
"subjectid": [111, 300, 141, 457, 748],
"subjectkey": 0,
"concepts": [
{"name": "concept3", "score": 88},
{"name": "concept4", "score": 55},
{"name": "concept5", "score": 66}
]
}],
}
# Define the nested elements.
mapping1 = {
'subjects': {
'type': 'nested'
}
}
mapping2 = {
'concepts': {
'type': 'nested'
}
}
conn.put_mapping("document", {'properties': mapping1}, ["documents-index"])
conn.put_mapping("subjects", {'properties': mapping2}, ["documents-index"])
# Insert document in 'documents-index' index.
conn.index(document, "documents-index", "document", 1)
# Refresh connection to make queries.
conn.refresh()
I'm able to query subjects nested field:
query1 = {
"nested": {
"path": "subjects",
"score_mode": "avg",
"query": {
"bool": {
"must": [
{
"text": {"subjects.subjectname": "subject1"}
},
{
"range": {"subjects.subjectkey": {"gt": 1}}
}
]
}
}
}
}
results = conn.search(query=query1)
for r in results:
print r # as expected, it returns the entire document.
but I can't figure out how to query based on concepts nested field.
ES documentation refers that
Multi level nesting is automatically supported, and detected,
resulting in an inner nested query to automatically match the relevant
nesting level (and not root) if it exists within another nested query.
So, I tryed to build a query with the following format:
query2 = {
"nested": {
"path": "concepts",
"score_mode": "avg",
"query": {
"bool": {
"must": [
{
"text": {"concepts.name": "concept1"}
},
{
"range": {"concepts.score": {"gt": 0}}
}
]
}
}
}
}
which returned 0 results.
I can't figure out what is missing and I haven't found any example with queries based on two levels of nesting.
Ok, after trying a tone of combinations, I finally got it using the following query:
query3 = {
"nested": {
"path": "subjects",
"score_mode": "avg",
"query": {
"bool": {
"must": [
{
"text": {"subjects.concepts.name": "concept1"}
}
]
}
}
}
}
So, the nested path attribute (subjects) is always the same, no matter the nested attribute level, and in the query definition I used the attribute's full path (subject.concepts.name).
Shot in the dark since I haven't tried this personally, but have you tried the fully qualified path to Concepts?
query2 = {
"nested": {
"path": "subjects.concepts",
"score_mode": "avg",
"query": {
"bool": {
"must": [
{
"text": {"subjects.concepts.name": "concept1"}
},
{
"range": {"subjects.concepts.score": {"gt": 0}}
}
]
}
}
}
}
I have some question for JCJS's answer. why your mapping shouldn't like this?
mapping = {
"subjects": {
"type": "nested",
"properties": {
"concepts": {
"type": "nested"
}
}
}
}
I try to define two type-mapping maybe doesn't work, but be a flatten data; I think we should nested in nested properties..
At last... if we use this mapping nested query should like this...
{
"query": {
"nested": {
"path": "subjects.concepts",
"query": {
"term": {
"name": {
"value": "concept1"
}
}
}
}
}
}
It's vital for using full path for path attribute...but not for term key can be full-path or relative-path.