How can you share Transformers across mirth channels - mirth

We are using appliance based mirth connect ver 3.4.2
We have few transformers which are common to all the channels but still they are under each channel. Anytime we have to modify something, we have to make changes in all channels.
We have transformers for
some functions with javascript and java code
some mappings
some database operations like inserts etc
Can we put this code somewhere where it is shared across channels and we don't need to write transformers under each channel ?
Thanks
Sid

A good way to do this is to move common code (functions, database operations, etc) into code templates.

some functions with javascript - Edit Code Templates will be a place where you can provide common codes which has to go for all channels.
some database operations like inserts - I believe/(good practice) these should be specific to channels, and if you have functions specific to certain channel and used in many places in that specific channel, then declare that function in modes of process needed like either in deploy,pre-processor,undeploy or post-processor.
some mappings - I'm not sure about this. If you choose Javascript for mapping we can achieve this mapping by making it as a global variable in global script places or coded templates.
some JAVA code - If it is a JAVA code, and a library built to invoke script on top of the library, then make the JAVA library to have get and set objects that way you can traverse to any depth on your Mirth script to access JAVA objects
For Eg: If you are building XML, there are many libraries you can use like Stax parser, JDOM etc, but using a document builder factory for developing XML will allow you to access JAVA objects to depth in Mirth script .

Related

Cross language workflow in Cadence

Suppose I have workers written in different languages (Java & C#). Each registered activities and workflows in the Cadence server. Is it possible to create a workflow which invokes activities from both workers ?
Yes it's possible. And it would be much easier if you implement the workflow in Java.
The only thing you need to deal with is how to translate the activity input/output and exception between C# activity and Java workflow.
To achieve that, you need to write some customized code for DataConverter interface. See this sample.
Basically, you need to define special Input/output/exception classes for C# activity. For toData, convert to the data format for C# client. For fromData and fromDataArray, convert back to the classes of Java.
I assume Neon.Cadence use JSON so input/output should be easy. You just need to pay more attention to exception.

Classification using Mallet and MaxEntropy

I want to do preprocessing of docs(wsdl files) using mallet in Eclipse. I want to generate feature vectors and perform classification using mallet and MaxEntropy. I am new in using mallet, Can anyone guide me in this regard.
Thanks
If you're referring to Web Services Description Language, I don't know of any specific workflows or packages designed for those documents. I suspect that you might want to create a set of features that combines text (from web service descriptions) and more "categorical" features, like URLs or URL patterns.
The way I would approach this problem is to create a separate package that reads WSDL files and writes out a file in a format that Mallet expects. This adapter could be written in whatever language you are most comfortable with. It would read all the files, get a parsed XML tree for each, extract text and certain other features, and output a file in Mallet's preferred tab-delimited, one-doc-per-line format.

In salesforce.com can you have multivalued attributes?

I am developing a Novell Identity Manager driver for Salesforce.com, and am trying to understand the Salesforce.com platform better.
I have had really good success to date. I can read pretty much arbitrary object classes out of SFDC, and create eDirectory objects for them, and what not. This is all done and working nicely. (Publisher Channel). Once I got Query events mapped out, most everything started working in the Publisher Channel.
I am now working on sending events back to SFDC (Subscriber channel) when changes occur in eDirectory.
I am using the upsert() function in the SOAP API, and with Novell Identity Manager, you basically build the SOAP doc, and can see the results as you build it. (You can do it in XSLT or you can use the various allowed tokens to build the document in DirXML Script. I am using DirXML Script which has been working well so far.).
The upshot of that comment is that I can build the SOAP document, see it, to be sure I get it right. Which is usually different than the Java/C++ approach that the sample code usually provides. Much more visual this way.
There are several things about upsert() that I do not entirely understand. I know how to blank a value, should I get that sort of event. Inside the <urn:sObjects> node, add a node like (assuming you get your namespaces declared already):
<urn1:fieldsToNull>FieldName</urn1:fieldsToNull>
I know how to add a value (AttrValue) to the attribute (FieldName), add a node like:
<FieldName>AttrValue</FieldName>
All this works and is pretty straight forward.
The question I have is, can a value in SFDC be multi-valued? In eDirectory, a multi valued attribute being changed, can happen two ways:
All values can be removed, and the new set re-added.
The single value removed can be sent as that sort of event (remove-value) or many values can be removed in one operation.
Looking at SFDC, I only ever see Multi-picklist attributes that seem to be stored in a single entry : or ; delimited. Is there another kind of multi valued attribute managed differently in SFDC? And if so, how would one manipulate it via the SOAP API?
I still have to decide if I want to map those multi-picklists to a single string, or a multi valued attribute of strings. First way is easier, second way is more useful... Hmmm... Choices...
Some references:
I have been using the page Sample SOAP messages to understand what the docs should look like.
Apex Explorer is a kicking tool for browsing the database and testing queries. Much like DBVisualizer does for JDBC connected databases. This would have been so much harder without it!
SoapUi is also required, and a lovely tool!
As far as I know there's no multi-value field other than multi-select picklists (and they map to semicolon-separated string). Generally platform encourages you to create a proper relationship with another (possibly new, custom) table if you're in need of having multiple values associated to your data.
Only other "unusual" thing I can think of is how the OwnerId field on certain objects (Case, Lead, maybe something else) can be used to point to User or Queue record. Looks weird when you are used to foreign key relationships from traditional databases. But this is not identical with what you're asking as there will be only one value at a time.
Of course you might be surpised sometimes with values you'll see in the database depending on the viewing user's locale (stuff like System Administrator profile becoming Systeembeheerder in Dutch). But this will be still a single value, translated on the fly just before the query results are sent back to you.
When I had to perform SOAP integration with SFDC, I've always used WSDL files and most of the time was fine with Java code generated out of them with Apache Axis. Hand-crafting the SOAP message yourself seems... wow, hardcore a bit. Are you sure you prefer visualisation of XML over the creation of classes, exceptions and all this stuff ready for use with one of several out-of-the-box integration methods? If they'll ever change the WSDL I need just to regenerate the classes from it; whereas changes to your SOAP message creation library might be painful...

machine learning and code generator from strings

The problem: Given a set of hand categorized strings (or a set of ordered vectors of strings) generate a categorize function to categorize more input. In my case, that data (or most of it) is not natural language.
The question: are there any tools out there that will do that? I'm thinking of some kind of reasonably polished, download, install and go kind of things, as opposed to to some library or a brittle academic program.
(Please don't get stuck on details as the real details would restrict answers to less generally useful responses AND are under NDA.)
As an example of what I'm looking at; the input I'm wanting to filter is computer generated status strings pulled from logs. Error messages (as an example) being filtered based on who needs to be informed or what action needs to be taken.
Doing Things Manually
If the error messages are being generated automatically and the list of exceptions behind the messages is not terribly large, you might just want to have a table that directly maps each error message type to the people who need to be notified.
This should make it easy to keep track of exactly who/which-groups will be getting what types of messages and to update the routing of messages should you decide that some of the messages are being misdirected.
Typically, a small fraction of the types of errors make up a large fraction of error reports. For example, Microsoft noticed that 80% of crashes were caused by 20% of the bugs in their software. So, to get something useful, you wouldn't even need to start with a complete table covering every type of error message. Instead, you could start with just a list that maps the most common errors to the right person and routes everything else to a person for manual routing. Each time an error is routed manually, you could then add an entry to the routing table so that errors of that type are handled automatically in the future.
Document Classification
Unless the error messages are being editorialized by people who submit them and you want to use this information when routing them, I wouldn't recommend treating this as a document classification task. However, if this is what you want to do, here's a list of reasonably good packages for document document classification organized by programming language:
Python - To do this using the Python based Natural Language Toolkit (NLTK), see the Document Classification section in the freely available NLTK book.
Ruby - If Ruby is more of your thing, you can use the Classifier gem. Here's sample code that detects whether Family Guy quotes are funny or not-funny.
C# - C# programmers can use nBayes. The project's home page has sample code for a simple spam/not-spam classifier.
Java - Java folks have Classifier4J, Weka, Lucene Mahout, and as adi92 mentioned Mallet.
Learning Rules with Weka - If rules are what you want, Weka might be of particular interest, since it includes a rule set based learner. You'll find a tutorial on using Weka for text categorization here.
Mallet has a bunch of classifiers which you can train and deploy entirely from the commandline
Weka is nice too because it has a huge number of classifiers and preprocessors for you to play with
Have you tried spam or email filters? By using text files that have been marked with appropriate categories, you should be able to categorize further text input. That's what those programs do, anyway, but instead of labeling your outputs a 'spam' and 'not spam', you could do other categories.
You could also try something involving AdaBoost for a more hands-on approach to rolling your own. This library from Google looks promising, but probably doesn't meet your ready-to-deploy requirements.

Do you create your own code generators?

The Pragmatic Programmer advocates the use of code generators.
Do you create code generators on your projects? If yes, what do you use them for?
In "Pragmatic Programmer" Hunt and Thomas distinguish between Passive and Active code generators.
Passive generators are run-once, after which you edit the result.
Active generators are run as often as desired, and you should never edit the result because it will be replaced.
IMO, the latter are much more valuable because they approach the DRY (don't-repeat-yourself) principle.
If the input information to your program can be split into two parts, the part that changes seldom (A) (like metadata or a DSL), and the part that is different each time the program is run (B)(the live input), you can write a generator program that takes only A as input, and writes out an ad-hoc program that only takes B as input.
(Another name for this is partial evaluation.)
The generator program is simpler because it only has to wade through input A, not A and B. Also, it does not have to be fast because it is not run often, and it doesn't have to care about memory leaks.
The ad-hoc program is faster because it's not having to wade through input that is almost always the same (A). It is simpler because it only has to make decisions about input B, not A and B.
It's a good idea for the generated ad-hoc program to be quite readable, so you can more easily find any errors in it. Once you get the errors removed from the generator, they are gone forever.
In one project I worked on, a team designed a complex database application with a design spec two inches thick and a lengthy implementation schedule, fraught with concerns about performance. By writing a code generator, two people did the job in three months, and the source code listings (in C) were about a half-inch thick, and the generated code was so fast as to not be an issue. The ad-hoc program was regenerated weekly, at trivial cost.
So active code generation, when you can use it, is a win-win. And, I think it's no accident that this is exactly what compilers do.
Code generators if used widely without correct argumentation make code less understandable and decrease maintainability (the same with dynamic SQL by the way). Personally I'm using it with some of ORM tools, because their usage here mostly obvious and sometimes for things like searcher-parser algorithms and grammatic analyzers which are not designed to be maintained "by hands" lately. Cheers.
In hardware design, it's fairly common practice to do this at several levels of the 'stack'. For instance, I wrote a code generator to emit Verilog for various widths, topologies, and structures of DMA engines and crossbar switches, because the constructs needed to express this parameterization weren't yet mature in the synthesis and simulation tool flows.
It's also routine to emit logical models all the way down to layout data for very regular things that can be expressed and generated algorithmically, like SRAM, cache, and register file structures.
I also spent a fair bit of time writing, essentially, a code generator that would take an XML description of all the registers on a System-on-Chip, and emit HTML (yes, yes, I know about XSLT, I just found emitting it programatically to be more time-effective), Verilog, SystemVerilog, C, Assembly etc. "views" of that data for different teams (front-end and back-end ASIC design, firmware, documentation, etc.) to use (and keep them consistent by virtue of this single XML "codebase"). Does that count?
People also like to write code generators for e.g. taking terse descriptions of very common things, like finite state machines, and mechanically outputting more verbose imperative language code to implement them efficiently (e.g. transition tables and traversal code).
We use code generators for generating data entity classes, database objects (like triggers, stored procs), service proxies etc. Anywhere you see lot of repititive code following a pattern and lot of manual work involved, code generators can help. But, you should not use it too much to the extend that maintainability is a pain. Some issues also arise if you want to regenerate them.
Tools like Visual Studio, Codesmith have their own templates for most of the common tasks and make this process easier. But, it is easy to roll out on your own.
It is often useful to create a code generator that generates code from a specification - usually one that has regular tabular rules. It reduces the chance of introducing an error via a typo or omission.
Yes ,
I developed my own code generator for AAA protocol Diameter (RFC 3588).
It could generate structures and Api's for diameter messages reading from an XML file that described diameter application's grammar.
That greatly reduced the time to develop complete diameter interface (such as SH/CX/RO etc.).
in my opinion a good programming language would not need code generators because introspection and runtime code generation would be part of language e.g. in python metaclasses and new module etc.
code generators usually generate more unmanageable code in long term usage.
however, if it is absolutely imperative to use a code generator (eclipse VE for swing development is what I use at times) then make sure you know what code is being generated. Believe me, you wouldn't want code in your application that you are not familiar with.
Writing own generator for project is not efficient. Instead, use a generator such as T4, CodeSmith and Zontroy.
T4 is more complex and you need to know a .Net programming language. You have to write your template line by line and you have to complete data relational operations on your own. You can use it over Visual Studio.
CodeSmith is an functional tool and there are plenty of templates ready to use. It is based on T4 and writing your own temlate takes too much time as it is in T4. There is a trial and a commercial version.
Zontroy is a new tool with a user friendly user interface. It has its own template language and is easy to learn. There is an online template market and it is developing. Even you can deliver templates and sell them online over market.
It has a free and a commercial version. Even the free version is enough to complete a medium-scale project.
there might be a lot of code generators out there , however I always create my own to make the code more understandable and suit the frameworks and guidelines we are using
We use a generator for all new code to help ensure that coding standards are followed.
We recently replaced our in-house C++ generator with CodeSmith. We still have to create the templates for the tool, but it seems ideal to not have to maintain the tool ourselves.
My most recent need for a generator was a project that read data from hardware and ultimately posted it to a 'dashboard' UI. In-between were models, properties, presenters, events, interfaces, flags, etc. for several data points. I worked up the framework for a couple data points until I was satisfied that I could live with the design. Then, with the help of some carefully placed comments, I put the "generation" in a visual studio macro, tweaked and cleaned the macro, added the datapoints to a function in the macro to call the generation - and saved several tedious hours (days?) in the end.
Don't underestimate the power of macros :)
I am also now trying to get my head around CodeRush customization capabilities to help me with some more local generation requirements. There is powerful stuff in there if you need on-the-fly decision making when generating a code block.
I have my own code generator that I run against SQL tables. It generates the SQL procedures to access the data, the data access layer and the business logic. It has done wonders in standardising my code and naming conventions. Because it expects certain fields in the database tables (such as an id column and updated datetime column) it has also helped standardise my data design.
How many are you looking for? I've created two major ones and numerous minor ones. The first of the major ones allowed me to generate programs 1500 line programs (give or take) that had a strong family resemblance but were attuned to the different tables in a database - and to do that fast, and reliably.
The downside of a code generator is that if there's a bug in the code generated (because the template contains a bug), then there's a lot of fixing to do.
However, for languages or systems where there is a lot of near-repetitious coding to be done, a good (enough) code generator is a boon (and more of a boon than a 'doggle').
In embedded systems, sometimes you need a big block of binary data in the flash. For example, I have one that takes a text file containing bitmap font glyphs and turns it into a .cc/.h file pair declaring interesting constants (such as first character, last character, character width and height) and then the actual data as a large static const uint8_t[].
Trying to do such a thing in C++ itself, so the font data would auto-generate on compilation without a first pass, would be a pain and most likely illegible. Writing a .o file by hand is out of the question. So is breaking out graph paper, hand encoding to binary, and typing all that in.
IMHO, this kind of thing is what code generators are for. Never forget that the computer works for you, not the other way around.
BTW, if you use a generator, always always always include some lines such as this at both the start and end of each generated file:
// This code was automatically generated from Font_foo.txt. DO NOT EDIT THIS FILE.
// If there's a bug, fix the font text file or the generator program, not this file.
Yes I've had to maintain a few. CORBA or some other object communication style of interface is probably the general thing that I think of first. You have object definitions that are provided to you by the interface you are going to talk over but you still have to build those objects up in code. Building and running a code generator is a fairly routine way of doing that. This can become a fairly lengthy compile just to support some legacy communication channel, and since there is a large tendency to put wrappers around CORBA to make it simpler, well things just get worse.
In general if you have a large amount of structures, or just rapidly changing structures that you need to use, but you can't handle the performance hit of building objects through metadata, then your into writing a code generator.
I can't think of any projects where we needed to create our own code generators from scratch but there are several where we used preexisting generators. (I have used both Antlr and the Eclipse Modeling Framework for building parsers and models in java for enterprise software.) The beauty of using a code generator that someone else has written is that the authors tend to be experts in that area and have solved problems that I didn't even know existed yet. This saves me time and frustration.
So even though I might be able to write code that solves the problem at hand, I can generate the code a lot faster and there is a good chance that it will be less buggy than anything I write.
If you're not going to write the code, are you going to be comfortable with someone else's generated code?
Is it cheaper in both time and $$$ in the long run to write your own code or code generator?
I wrote a code generator that would build 100's of classes (java) that would output XML data from database in a DTD or schema compliant manner. The code generation was generally a one time thing and the code would then be smartened up with various business rules etc. The output was for a rather pedantic bank.
Code generators are work-around for programming language limitations. I personally prefer reflection instead of code generators but I agree that code generators are more flexible and resulting code obviously faster during runtime. I hope, future versions of C# will include some kind of DSL environment.
The only code generators that I use are webservice parsers. I personally stay away from code generators because of the maintenance problems for new employees or a separate team after hand off.
I write my own code generators, mainly in T-SQL, which are called during the build process.
Based on meta-model data, they generate triggers, logging, C# const declarations, INSERT/UPDATE statements, data model information to check whether the app is running on the expected database schema.
I still need to write a forms generator for increased productivity, more specs and less coding ;)
I've created a few code generators. I had a passive code generator for SQL Stored procedures which used templates. This generated generated 90% of our stored procedures.
Since we made the switch to Entity Framework I've created an active codegenerator using T4 (Text Template Transformation Toolkit) inside visual studio. I've used it to create basic repository partial classes for our entities. Works very nicely and saves a bunch of coding. I also use T4 for decorating the entity classes with certain Attributes.
I use code generation features provided by EMF - Eclipse Modeling Framework.
Code generators are really useful in many cases, especially when mapping from one format to another. I've done code generators for IDL to C++, database tables to OO types, and marshalling code just to name a few.
I think the point the authors are trying to make is that if you're a developer you should be able to make the computer work for you. Generating code is just one obvious task to automate.
I once worked with a guy who insisted that he would do our IDL to C++ mapping manually. In the beginning of the project he was able to keep up, because the rest of us were trying to figure out what to do, but eventually he became a bottleneck. I did a code generator in Perl and then we could pretty much do his "work" in a few minutes.
See our "universal" code generator based on program transformations.
I'm the architect and a key implementer.
It is worth noting that a significant fraction of this generator, is generated using this generator.
We uses Telosys code generator in our projects : http://www.telosys.org/
We have created it to reduce the development duration in recurrent tasks like CRUD screens, documentation, etc...
For us the most important thing is to be able to customize the generator's templates, in order to create new generation targets if necessary and to customize existing templates. That's why we have also created a template editor (for Velocity .vm files).
It works fine for Java/Spring/AngularJS code generator and can be adapt for other targets (PHP, C#, Python, etc )