Imaginary part of coherence matlab - matlab

I want to calculate IMC according to below instructions
I wrote below code in matlab, but the result is not what I was expecting.
Is that code a valid implementation of the above instructions?
Could someone help me with a better code?
function [ imag_coherence] = imcoh( x,y )
xy=xcorr(fft(x),fft(y));
xx=xcorr(fft(x));
yy=xcorr(fft(y));
imag_coherence=imag(xy./sqrt(xx.*yy));
end

xcorr actually computes the cross-correlation between the computed spectrums (a sums contributions over all frequencies), not the expectation of the point-wise multiplication (i.e. for a given fixed frequency) of those spectrums. The latter being what the coherency definition you provided uses.
Assuming the processes producing x and y are ergodic, the expectations can be estimated by computing the average over many blocks of data. With that in mind, an implementation of the coherency as described in your definition could look like:
function [ result ] = coherency( x,y,N )
% divide data in N equal length blocks for averaging later on
L = floor(length(x)/N);
xt = reshape(x(1:L*N), L, N);
yt = reshape(y(1:L*N), L, N);
% transform to frequency domain
Xf = fft(xt,L,1);
Yf = fft(yt,L,1);
% estimate expectations by taking the average over N blocks
xy = sum(Xf .* conj(Yf), 2)/N;
xx = sum(Xf .* conj(Xf), 2)/N;
yy = sum(Yf .* conj(Yf), 2)/N;
% combine terms to get final result
result=xy./sqrt(xx.*yy);
end
If you only want the imaginary part, then it's a simple matter of computing imag(coherency(x,y,N)).

Related

numerical integration for Gaussian function - indefinite integral

My approach
fun = #(y) (1/sqrt(pi))*exp(-(y-1).^2).*log(1 + exp(-4*y))
integral(fun,-Inf,Inf)
This gives NaN.
So I tried plotting it.
y= -10:0.1:10;
plot(y,exp(-(y-1).^2).*log(1 + exp(-4*y)))
Then understood that domain (siginificant part) is from -4 to +4.
So changed the limits to
integral(fun,-10,10)
However I do not want to always plot the graph and then know its limits. So is there any way to know the integral directly from -Inf to Inf.
Discussion
If your integrals are always of the form
I would use a high-order Gauss–Hermite quadrature rule.
It's similar to the Gauss-Legendre-Kronrod rule that forms the basis for quadgk but is specifically tailored for integrals over the real line with a standard Gaussian multiplier.
Rewriting your equation with the substitution x = y-1, we get
.
The integral can then be computed using the Gauss-Hermite rule of arbitrary order (within reason):
>> order = 10;
>> [nodes,weights] = GaussHermiteRule(order);
>> f = #(x) log(1 + exp(-4*(x+1)))/sqrt(pi);
>> sum(f(nodes).*weights)
ans =
0.1933
I'd note that the function below builds a full order x order matrix to compute nodes, so it shouldn't be made too large.
There is a way to avoid this by explicitly computing the weights, but I decided to be lazy.
Besides, event at order 100, the Gaussian multiplier is about 2E-98, so the integrand's contribution is extremely minimal.
And while this isn't inherently adaptive, a high-order rule should be sufficient in most cases ... I hope.
Code
function [nodes,weights] = GaussHermiteRule(n)
% ------------------------------------------------------------------------------
% Find the nodes and weights for a Gauss-Hermite Quadrature integration.
%
if (n < 1)
error('There is no Gauss-Hermite rule of order 0.');
elseif (n < 0) || (abs(n - round(n)) > eps())
error('Given order ''n'' must be a strictly positive integer.');
else
n = round(n);
end
% Get the nodes and weights from the Golub-Welsch function
n = (0:n)' ;
b = n*0 ;
a = b + 0.5 ;
c = n ;
[nodes,weights] = GolubWelsch(a,b,c,sqrt(pi));
end
function [xk,wk] = GolubWelsch(ak,bk,ck,mu0)
%GolubWelsch
% Calculate the approximate* nodes and weights (normalized to 1) of an orthogonal
% polynomial family defined by a three-term reccurence relation of the form
% x pk(x) = ak pkp1(x) + bk pk(x) + ck pkm1(x)
%
% The weight scale factor mu0 is the integral of the weight function over the
% orthogonal domain.
%
% Calculate the terms for the orthonormal version of the polynomials
alpha = sqrt(ak(1:end-1) .* ck(2:end));
% Build the symmetric tridiagonal matrix
T = full(spdiags([[alpha;0],bk,[0;alpha]],[-1,0,+1],length(alpha),length(alpha)));
% Calculate the eigenvectors and values of the matrix
[V,xk] = eig(T,'vector');
% Calculate the weights from the eigenvectors - technically, Golub-Welsch requires
% a normalization, but since MATLAB returns unit eigenvectors, it is omitted.
wk = mu0*(V(1,:).^2)';
end
I've had success with transforming such infinite-bounded integrals using a numerical variable transformation, as explained in Numerical Recipes 3e, section 4.5.3. Basically, you substitute in y=c*tan(t)+b and then numerically integrate over t in (-pi/2,pi/2), which sweeps y from -infinity to infinity. You can tune the values of c and b to optimize the process. This approach largely dodges the question of trying to determine cutoffs in the domain, but for this to work reliably using quadrature you have to know that the integrand does not have features far from y=b.
A quick and dirty solution would be to look for a position, where your function is sufficiently small enough and then taking it as limits. This assumes that for x>0 the function fun decreases montonically and fun(x) is roughly the same size as fun(-x) for all x.
%// A small number
epsilon = eps;
%// Stepsize for searching bound
stepTest = 1;
%// Starting position for searching bound
position = 0;
%// Not yet small enough
smallEnough = false;
%// Search bound
while ~smallEnough
smallEnough = (fun(position) < eps);
position = position + stepTest;
end
%// Calculate integral
integral(fun, -position, position)
If your were happy with plotting the function, deciding by eye where you can cut, then this code will suffice, I guess.

Numerical derivative of a vector

I have a problem with numerical derivative of a vector that is x: Nx1 with respect to another vector t (time) that is the same size of x.
I do the following (x is chosen to be sine function as an example):
t=t0:ts:tf;
x=sin(t);
xd=diff(x)/ts;
but the answer xd is (N-1)x1 and I figured out that it does not compute derivative corresponding to the first element of x.
is there any other way to compute this derivative?
You are looking for the numerical gradient I assume.
t0 = 0;
ts = pi/10;
tf = 2*pi;
t = t0:ts:tf;
x = sin(t);
dx = gradient(x)/ts
The purpose of this function is a different one (vector fields), but it offers what diff doesn't: input and output vector of equal length.
gradient calculates the central difference between data points. For an
array, matrix, or vector with N values in each row, the ith value is
defined by
The gradient at the end points, where i=1 and i=N, is calculated with
a single-sided difference between the endpoint value and the next
adjacent value within the row. If two or more outputs are specified,
gradient also calculates central differences along other dimensions.
Unlike the diff function, gradient returns an array with the same
number of elements as the input.
I know I'm a little late to the game here, but you can also get an approximation of the numerical derivative by taking the derivatives of the polynomial (cubic) splines that runs through your data:
function dy = splineDerivative(x,y)
% the spline has continuous first and second derivatives
pp = spline(x,y); % could also use pp = pchip(x,y);
[breaks,coefs,K,r,d] = unmkpp(pp);
% pre-allocate the coefficient vector
dCoeff = zeroes(K,r-1);
% Columns are ordered from highest to lowest power. Both spline and pchip
% return 4xn matrices, ordered from 3rd to zeroth power. (Thanks to the
% anonymous person who suggested this edit).
dCoeff(:, 1) = 3 * coefs(:, 1); % d(ax^3)/dx = 3ax^2;
dCoeff(:, 2) = 2 * coefs(:, 2); % d(ax^2)/dx = 2ax;
dCoeff(:, 3) = 1 * coefs(:, 3); % d(ax^1)/dx = a;
dpp = mkpp(breaks,dCoeff,d);
dy = ppval(dpp,x);
The spline polynomial is always guaranteed to have continuous first and second derivatives at each point. I haven not tested and compared this against using pchip instead of spline, but that might be another option as it too has continuous first derivatives (but not second derivatives) at every point.
The advantage of this is that there is no requirement that the step size be even.
There are some options to work-around your issue.
First: you can make your domain larger. Instead of N, use N+1 gridpoints.
Second: depending on the end-point of interest, you can use
Forward difference: F(x + dx) - F(x)
Backward difference: F(x) - F(x - dx)

Fourier Transforms in MatLab

So I have had a few posts the last few days about using MatLab to perform a convolution (see here). But I am having issues and just want to try and use the convolution property of Fourier Transforms. I have the code below:
width = 83.66;
x = linspace(-400,400,1000);
a2 = 1.205e+004 ;
al = 1.778e+005 ;
b1 = 94.88 ;
c1 = 224.3 ;
d = 4.077 ;
measured = al*exp(-((abs((x-b1)./c1).^d)))+a2;
%slit
rect = #(x) 0.5*(sign(x+0.5) - sign(x-0.5));
rt = rect(x/width);
subplot(5,1,1);plot(x,measured);title('imported data-super gaussian')
subplot(5,1,2);plot(x,(real(fftshift(fft(rt)))));title('transformed slit')
subplot(5,1,3);plot(x,rt);title('slit')
u = (fftshift(fft(measured)));
l = u./(real(fftshift(fft(rt))));
response = (fftshift(ifft(l)));
subplot(5,1,4);plot(x,real(response));title('response')
%Data Check
check = conv(rt,response,'full');
z = linspace(min(x),max(x),length(check));
subplot(5,1,5);plot(z,real(check));title('check')
My goal is to take my case, which is $measured = rt \ast signal$ and find signal. Once I find my signal, I convolve it with the rectangle and should get back measured, but I do not get that.
I have very little matlab experience, and pretty much 0 signal processing experience (working with DFTs). So any advice on how to do this would be greatly appreciated!
After considering the problem statement and woodchips' advice, I think we can get closer to a solution.
Input: u(t)
Output: y(t)
If we assume the system is causal and linear we would need to shift the rect function to occur before the response, like so:
rt = rect(((x+270+(83.66/2))/83.66));
figure; plot( x, measured, x, max(measured)*rt )
Next, consider the response to the input. It looks to me to be first order. If we assume as such, we will have a system transfer function in the frequency domain of the form:
H(s) = (b1*s + b0)/(s + a0)
You had been trying to use convolution to and FFT's to find the impulse response, "transfer function" in the time domain. However, the FFT of the rect, being a sinc has a zero crossing periodically. These zero points make using the FFT to identify the system extremely difficult. Due to:
Y(s)/U(s) = H(s)
So we have U(s) = A*sinc(a*s), with zeros, which makes the division go to infinity, which doesn't make sense for a real system.
Instead, let's attempt to fit coefficients to the frequency domain linear transfer function that we postulate is of order 1 since there are no overshoots, etc, 1st order is a reasonable place to start.
EDIT
I realized my first answer here had a unstable system description, sorry! The solution to the ODE is very stiff due to the rect function, so we need to crank down the maximum time step and use a stiff solver. However, this is still a tough problem to solve this way, a more analytical approach may be more tractable.
We use fminsearch to find the continuous time transfer function coefficients like:
function x = findTf(c0,u,y,t)
% minimize the error for the estimated
% parameters of the transfer function
% use a scaled version without an offset for the response, the
% scalars can be added back later without breaking the solution.
yo = (y - min(y))/max(y);
x = fminsearch(#(c) simSystem(c,u,y,t),c0);
end
% calculate the derivatives of the transfer function
% inputs and outputs using the estimated coefficient
% vector c
function out = simSystem(c,u,y,t)
% estimate the derivative of the input
du = diff([0; u])./diff([0; t]);
% estimate the second derivative of the input
d2u = diff([0; du])./diff([0; t]);
% find the output of the system, corresponds to measured
opt = odeset('MaxStep',mean(diff(t))/100);
[~,yp] = ode15s(#(tt,yy) odeFun(tt,yy,c,du,d2u,t),t,[y(1) u(1) 0],opt);
% find the error between the actual measured output and the output
% from the system with the estimated coefficients
out = sum((yp(:,1) - y).^2);
end
function dy = odeFun(t,y,c,du,d2u,tx)
dy = [c(1)*y(3)+c(2)*y(2)-c(3)*y(1);
interp1(tx,du,t);
interp1(tx,d2u,t)];
end
Something like that anyway should get you going.
x = findTf([1 1 1]',rt',measured',x');

MATLAB: Correlation with a seed region

By default, all built-in functions for computing correlation or covariance return a matrix. I am trying to write an efficient function that will compute the correlation between a seed region and various other regions, but I do not need the correlations between the other regions. I assume that computing the full correlation matrix would therefore be inefficient.
I could instead compute a the correlation matrix between each region and the seed region, choose one of the off diagonal points and store it, but I feel like looping in this situation is also inefficient.
To be more concrete, each point in my 3-dimensional space has a time dimension. I am attempting to compute the mean correlation between a given point and all points in space within a given radius. I want to repeat this procedure hundreds of thousands of times, for many different radius lengths, and so on, so I would like for this to be as efficient as possible.
So, what is the best way to compute the correlation between a single vector and several others, without computing correlations that I will just ignore?
Thank you,
Chris
EDIT: Here is my code now...
function [corrMap] = TIME_meanCorrMap(A,radius)
% Even though the variable is "radius", we work with cubes for simplicity...
% So, the radius is the distance (in voxels) from the center of the cube an edge.
denom = ((radius*2)^3)-1;
dim = size(A);
corrMap = zeros(dim(1:3));
for x = radius+1:dim(1)-radius
rx = [x-radius : x+radius];
for y = radius+1:dim(2)-radius
ry = [y-radius : y+radius];
for z = radius+1:dim(3)-radius
rz = [z-radius : z+radius];
corrCoefs = zeros(1,denom);
seed = A(x,y,z,:);
i=0;
for xx = rx
for yy = ry
for zz = rz
if ~all([x y z] == [xx yy zz])
i = i + 1;
temp = corrcoef(seed,A(xx,yy,zz,:));
corrCoeffs(i) = temp(1,2);
end
end
end
end
corrMap = mean(corrCoeffs);
end
end
end
EDIT: Here are some more times to supplement the accepted answer.
Using bsxfun() to do normalization, and matrix multiplication to compute correlations:
tic; for i=1:10000
x=rand(100);
xz = bsxfun(#rdivide,bsxfun(#minus,x,mean(x)),std(x));
cc = xz(:,2:end)' * xz(:,1) ./ 99;
end; toc
Elapsed time is 6.928251 seconds.
Using zscore() to normalize, matrix multiplication to compute correlations:
tic; for i=1:10000
x=rand(100);
xz = zscore(x);
cc = xz(:,2:end)' * xz(:,1) ./ 99;
end; toc
Elapsed time is 7.040677 seconds.
Using bsxfun() to normalize, and corr() to compute correlations.
tic; for i=1:10000
x=rand(100);
xz = bsxfun(#rdivide,bsxfun(#minus,x,mean(x)),std(x));
cc = corr(x(:,1),x(:,2:end));
end; toc
Elapsed time is 11.385707 seconds.
It is certainly possible to improve upon the for loop that you are currently employing. The correlation compuattions can be parallelized using matrix multiplications if you have sufficient RAM. However, it will require you to unwrap your 4-dimensional data matrix A into a different shape. most likely you are dealing with 3-dimensional voxelwise fMRI data, in which case you'll have to reshape from [x y z time] matrix to an [index time] matrix. I will assume you can deal with that reshaping. Once you have your seed timecourse [Time by 1] and your target timecourses [Time by NumTargets] ready, you can perform some much more efficient computations.
A quick way to efficiently compute the desired correlation is using the corr function in MATLAB. This function will accept 2 matrix arguments and it will quite efficiently compute all pairwise correlations between the columns of argument 1 and the columns of argument 2, e.g.
T = 200; %time samples
N = 20; %number of other voxels
seed = randn(T,1); %data from seed voxel
targets = randn(T,N); %data from target voxels
%here is the for loop method
tic
for n = 1:N
tmp = corrcoef(seed, targets(:,n));
tmpcc = tmp(1,2);
end
looptime = toc;
%here is the parallel method
tic
cc = corr(seed, targets);
matrixtime = toc;
On my machine, the parallel operation in corr is faster than the loop method by a factor proportional to T*N.
It is possible to go a little faster than the corr function if you are willing to perofrm the underlying matrix operations yourself, and in any case it is worth knowing what they are. The correlation between two vectors is basically a normalized dot product, so using the conventions above you can compute the correlations in the following way
zseed = zscore(seed); %normalize the seed timecourse by z-scoring
ztargets= zscore(targets); %normalize the target timecourses by z-scoring
ztargets = ztargets'; %flip columns and rows for convenience
cc2 = ztargets*zseed./(T-1); %compute many dot products with one matrix multiplication
The code above is basically what the corr function will do which is why it is much faster than the loop. Note that most of the operation time is in the zscore operations, and you can improve on the performance of the corr function if you efficiently compute the zscore using the bsxfun command. For now, I hope this gives you some direction on how to compute a correlation between a seed timecourse and many target timecourses without having to loop through and compute each one separately.

How can we produce kappa and delta in the following model using Matlab?

I have a following stochastic model describing evolution of a process (Y) in space and time. Ds and Dt are domain in space (2D with x and y axes) and time (1D with t axis). This model is usually known as mixed-effects model or components-of-variation models
I am currently developing Y as follow:
%# Time parameters
T=1:1:20; % input
nT=numel(T);
%# Grid and model parameters
nRow=100;
nCol=100;
[Grid.Nx,Grid.Ny,Grid.Nt] = meshgrid(1:1:nCol,1:1:nRow,T);
xPower=0.1;
tPower=1;
noisePower=1;
detConstant=1;
deterministic_mu = detConstant.*(((Grid.Nt).^tPower)./((Grid.Nx).^xPower));
beta_s = randn(nRow,nCol); % mean-zero random effect representing location specific variability common to all times
gammaTemp = randn(nT,1);
for t = 1:nT
gamma_t(:,:,t) = repmat(gammaTemp(t),nRow,nCol); % mean-zero random effect representing time specific variability common to all locations
end
var=0.1;% noise has variance = 0.1
for t=1:nT
kappa_st(:,:,t) = sqrt(var)*randn(nRow,nCol);
end
for t=1:nT
Y(:,:,t) = deterministic_mu(:,:,t) + beta_s + gamma_t(:,:,t) + kappa_st(:,:,t);
end
My questions are:
How to produce delta in the expression for Y and the difference in kappa and delta?
Help explain, through some illustration using Matlab, if I am correctly producing Y?
Please let me know if you need some more information/explanation. Thanks.
First, I rewrote your code to make it a bit more efficient. I see you generate linearly-spaced grids for x,y and t and carry out the computation for all points in this grid. This approach has severe limitations on the maximum attainable grid resolution, since the 3D grid (and all variables defined with it) can consume an awfully large amount of memory if the resolution goes up. If the model you're implementing will grow in complexity and size (it often does), I'd suggest you throw this all into a function accepting matrix/vector inputs for s and t, which will be a bit more flexible in this regard -- processing "blocks" of data that will otherwise not fit in memory will be a lot easier that way.
Then, I generated the the delta_st term with rand instead of randn since the noise should be "white". Now I'm very unsure about that last one, and I didn't have time to read through the paper you linked to -- can you tell me on what pages I can find relevant the sections for the delta_st?
Now, the code:
%# Time parameters
T = 1:1:20; % input
nT = numel(T);
%# Grid and model parameters
nRow = 100;
nCol = 100;
% noise has variance = 0.1
var = 0.1;
xPower = 0.1;
tPower = 1;
noisePower = 1;
detConstant = 1;
[Grid.Nx,Grid.Ny,Grid.Nt] = meshgrid(1:nCol,1:nRow,T);
% deterministic mean
deterministic_mu = detConstant .* Grid.Nt.^tPower ./ Grid.Nx.^xPower;
% mean-zero random effect representing location specific
% variability common to all times
beta_s = repmat(randn(nRow,nCol), [1 1 nT]);
% mean-zero random effect representing time specific
% variability common to all locations
gamma_t = bsxfun(#times, ones(nRow,nCol,nT), randn(1, 1, nT));
% mean zero random effect capturing the spatio-temporal
% interaction not found in the larger-scale deterministic mu
kappa_st = sqrt(var)*randn(nRow,nCol,nT);
% mean zero random effect representing the micro-scale
% spatio-temporal variability that is modelled by white
% noise (i.i.d. at different time steps) in Ds·Dt
delta_st = noisePower * (rand(nRow,nCol,nT)-0.5);
% Final result:
Y = deterministic_mu + beta_s + gamma_t + kappa_st + delta_st;
Your implementation samples beta, gamma and kappa as if they are white (e.g. their values at each (x,y,t) are independent). The descriptions of the terms suggest that this is not meant to be the case. It looks like delta is supposed to capture the white noise, while the other terms capture the correlations over their respective domains. e.g. there is a non-zero correlation between gamma(t_1) and gamma(t_1+1).
If you wish to model gamma as a stationary Gaussian Markov process with variance var_g and correlation cor_g between gamma(t) and gamma(t+1), you can use something like
gamma_t = nan( nT, 1 );
gamma_t(1) = sqrt(var_g)*randn();
K_g = cor_g/var_g;
K_w = sqrt( (1-K_g^2)*var_g );
for t = 2:nT,
gamma_t(t) = K_g*gamma_t(t-1) + K_w*randn();
end
gamma_t = reshape( gamma_t, [ 1 1 nT ] );
The formulas I've used for gains K_g and K_w in the above code (and the initialization of gamma_t(1)) produce the desired stationary variance \sigma^2_0 and one-step covariance \sigma^2_1:
Note that the implementation above assumes that later you will sum the terms using bsxfun to do the "repmat" for you:
Y = bsxfun( #plus, deterministic_mu + kappa_st + delta_st, beta_s );
Y = bsxfun( #plus, Y, gamma_t );
Note that I haven't tested the above code, so you should confirm with sampling that it does actually produce a zero noise process of the specified variance and covariance between adjacent samples. To sample beta the same procedure can be extended into two dimensions, but the principles are essentially the same. I suspect kappa should be similarly modeled as a Markov Gaussian Process, but in all three dimensions and with a lower variance to represent higher-order effects not captured in mu, beta and gamma.
Delta is supposed to be zero mean stationary white noise. Assuming it to be Gaussian with variance noisePower one would sample it using
delta_st = sqrt(noisePower)*randn( [ nRows nCols nT ] );