Curator TreeCache eventual consistency - apache-zookeeper

When using Curator TreeCache. I understand that there is no guarantee for cache state to stay synchronous with the leader and that create/update/delete events can be missed (Zookeeper missed events on successive changes).
From what I understand however - TreeCache will be eventually consistent.
Question is: Is there any maximum (guaranteed) time defined in which the change in ZK node gets propagated to the TreeCache instance?

No there isn't a maximum time. Note: this has nothing to do with TreeCache it's merely how ZooKeeper works. Internally, all write operations go through the current leader node in your ZK ensemble. The "follower" nodes eventually synchronize with the leader's database. In practice, this will be a matter of seconds at the most but, of course, it depends entirely on the size of your database, your network, the number of operations in flight, etc.
Update: note that you configure your ZK instances with syncLimit which specifies the maximum db sync for your ensemble. ZooKeeper will timeout when syncLimit is exceeded. See here: https://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html

Related

Stateful Kafka Stream - How to restore state?

If I am running my stream application - appA on Machine A and then I moved it to Machine B; will it remember the earlier state?
When I write simple consumer it remembers the last offset and it gets stored in __consumer_offsets itself on Broker. So no matter where I start the Consumer it will pick up from that place.
Is there such a construct for stateful stream processing applications? If I am calculating the continuous Profit and Loss of my portfolio I need to start from where it was the last run and then start aggregating new transactions to that earlier P&L number. I cannot afford to process all messages again from the start of time. I have been having a hard time in finding an article around this that explains how to solve this problem.
No, it won't remember state unless you move the statestore as well (state.dir configuration).
The changelog topic will need read from the earliest offsets to rebuild the state.
There's presentations about running Kafka Steams in Kubernetes that cover some aspects of this, since Kubernetes can stop and relocate its pods... But kubernetes also has volume management features that may not be available in your scenario.
It might therefore be best to run your job on both machines to start, then you have fault tolerance, high availability with a warm standby replica / partitioned state.

Why do we need to use Zookeeper for a Coordination Service instead of just a central database?

Quoting the zookeeper docs
ZooKeeper is a distributed, open-source coordination service for
distributed applications. It exposes a simple set of primitives that
distributed applications can build upon to implement higher level
services for synchronization, configuration maintenance, and groups
and naming.
Guarantees
ZooKeeper is very fast and very simple. Since its goal, though, is to
be a basis for the construction of more complicated services, such as
synchronization, it provides a set of guarantees. These are:
Sequential Consistency - Updates from a client will be applied in the order that they were sent.
Atomicity - Updates either succeed or fail. No partial results.
Single System Image - A client will see the same view of the service regardless of the server that it connects to.
Reliability - Once an update has been applied, it will persist from that time forward until a client overwrites the update.
Timeliness - The clients view of the system is guaranteed to be up-to-date within a certain time bound.
But I don't see any new problem that Zookeeper solves apart from being highly fault tolerant compared to a central database. All the guarantees that zookeeper assures can be guaranteed in a central database too.
Atomicity -> As it's a single node. all updates are atomic.
Sequential Consistency -> after an update clients can wait until the ack until they send the next update to maintain the sequence.
Single System Image, Reliability, Timeliness -> guaranteed as it's a single node.
So, Avoiding a single point of failure is the only main advantage of using zookeeper. Please correct me if I'm wrong.
Zookeeper (and other consensus based systems) offers sequential consistency, strong consistency and high availability.
"apart from being highly fault tolerant" that's actually huge - the fault tolerance.
If you don't care about availability, you totally can use any other linearizable storage - even a directory with files will work.
Consensus based system, and systems based on them (e.g. zoo + your own code) are used to implement machine state replication. All transitions are stored in a distributed log - to make it durable there are many copies. Consensus is about what is the order of event in the log.
With the log being available, the actual business code can consume events and change its state machine - typical state machine transitions. Since each copy of log has the same sequence of events, all states machines will get to the same state.
The key thing is about timing - all logs will get same events in the same order, but there is no guarantee when that happens - a node could be disconnected from the network, hence its log will be stale, and by extension the state machine as well.
To see the true latest value, as you would expect with a singe source of truth, you have to use linearizable read. One way of doing this is to append the read operation to the log itself and wait for it to be committed. Read do nothing with state machines, but the fact that a reader placed something to log and got it committed, that signals that the entire log is read - there is no stale data. (Stale it means that all writes happened before the read are reflected, while read is happening, new writes could happen).
All of this complexity comes form the availability requirements - a cluster with three nodes can let one node to go down, without affecting operations.
So, yes, you could use any linear storage to do the same, ignoring availability. You could do this by keeping the log of events in a table, and every client to track a pointer (or id) of last applied operation; so every client could go and move its own state machine.

How to minimize the latency involved in kafka messaging framework?

Scenario: I have a low-volume topic (~150msgs/sec) for which we would like to have a
low propagation delay from producer to consumer.
I added a time stamp from a producer and read it at consumer to record the propagation delay, with default configurations the msg (of 20 bytes) showed a propagation delay of 1960ms to 1230ms. No network delay is involved since, I tried on a 1 producer and 1 simple consumer on the same machine.
When I have tried adjusting the topic flush interval to 20ms, it drops
to 1100ms to 980ms. Then I tried adjusting the consumers "fetcher.backoff.ms" to 10ms, it dropped to 1070ms - 860ms.
Issue: For a 20 bytes of a msg, I would like to have a propagation delay as low as possible and ~950ms is a higher figure.
Question: Anything I am missing out in configuration?
I do welcome comments, delay which you got as minimum.
Assumption: The Kafka system involves the disk I/O before the consumer get the msg from the producer and this goes with the hard disk RPM and so on..
Update:
Tried to tune the Log Flush Policy for Durability & Latency.Following is the configuration:
# The number of messages to accept before forcing a flush of data to disk
log.flush.interval=10
# The maximum amount of time a message can sit in a log before we force a flush
log.default.flush.interval.ms=100
# The interval (in ms) at which logs are checked to see if they need to be
# flushed to disk.
log.default.flush.scheduler.interval.ms=100
For the same msg of 20 bytes, the delay was 740ms -880ms.
The following statements are made clear in the configuration itself.
There are a few important trade-offs:
Durability: Unflushed data is at greater risk of loss in the event of a crash.
Latency: Data is not made available to consumers until it is flushed (which adds latency).
Throughput: The flush is generally the most expensive operation.
So, I believe there is no way to come down to a mark of 150ms - 250ms. (without hardware upgrade) .
I am not trying to dodge the question but I think that kafka is a poor choice for this use case. While I think Kafka is great (I have been a huge proponent of its use at my workplace), its strength is not low-latency. Its strengths are high producer throughput and support for both fast and slow consumers. While it does provide durability and fault tolerance, so do more general purpose systems like rabbitMQ. RabbitMQ also supports a variety of different clients including node.js. Where rabbitMQ falls short when compared to Kafka is when you are dealing with extremely high volumes (say 150K msg/s). At that point, Rabbit's approach to durability starts to fall apart and Kafka really stands out. The durability and fault tolerance capabilities of rabbit are more than capable at 20K msg/s (in my experience).
Also, to achieve such high throughput, Kafka deals with messages in batches. While the batches are small and their size is configurable, you can't make them too small without incurring a lot of overhead. Unfortunately, message batching makes low-latency very difficult. While you can tune various settings in Kafka, I wouldn't use Kafka for anything where latency needed to be consistently less than 1-2 seconds.
Also, Kafka 0.7.2 is not a good choice if you are launching a new application. All of the focus is on 0.8 now so you will be on your own if you run into problems and I definitely wouldn't expect any new features. For future stable releases, follow the link here stable Kafka release
Again, I think Kafka is great for some very specific, though popular, use cases. At my workplace we use both Rabbit and Kafka. While that may seem gratuitous, they really are complimentary.
I know it's been over a year since this question was asked, but I've just built up a Kafka cluster for dev purposes, and we're seeing <1ms latency from producer to consumer. My cluster consists of three VM nodes running on a cloud VM service (Skytap) with SAN storage, so it's far from ideal hardware. I'm using Kafka 0.9.0.0, which is new enough that I'm confident the asker was using something older. I have no experience with older versions, so you might get this performance increase simply from an upgrade.
I'm measuring latency by running a Java producer and consumer I wrote. Both run on the same machine, on a fourth VM in the same Skytap environment (to minimize network latency). The producer records the current time (System.nanoTime()), uses that value as the payload in an Avro message, and sends (acks=1). The consumer is configured to poll continuously with a 1ms timeout. When it receives a batch of messages, it records the current time (System.nanoTime() again), then subtracts the receive time from the send time to compute latency. When it has 100 messages, it computes the average of all 100 latencies and prints to stdout. Note that it's important to run the producer and consumer on the same machine so that there is no clock sync issue with the latency computation.
I've played quite a bit with the volume of messages generated by the producer. There is definitely a point where there are too many and latency starts to increase, but it's substantially higher than 150/sec. The occasional message takes as much as 20ms to deliver, but the vast majority are between 0.5ms and 1.5ms.
All of this was accomplished with Kafka 0.9's default configurations. I didn't have to do any tweaking. I used batch-size=1 for my initial tests, but I found later that it had no effect at low volume and imposed a significant limit on the peak volume before latencies started to increase.
It's important to note that when I run my producer and consumer on my local machine, the exact same setup reports message latencies in the 100ms range -- the exact same latencies reported if I simply ping my Kafka brokers.
I'll edit this message later with sample code from my producer and consumer along with other details, but I wanted to post something before I forget.
EDIT, four years later:
I just got an upvote on this, which led me to come back and re-read. Unfortunately (but actually fortunately), I no longer work for that company, and no longer have access to the code I promised I'd share. Kafka has also matured several versions since 0.9.
Another thing I've learned in the ensuing time is that Kafka latencies increase when there is not much traffic. This is due to the way the clients use batching and threading to aggregate messages. It's very fast when you have a continuous stream of messages, but any time there is a moment of "silence", the next message will have to pay the cost to get the stream moving again.
It's been some years since I was deep in Kafka tuning. Looking at the latest version (2.5 -- producer configuration docs here), I can see that they've decreased linger.ms (the amount of time a producer will wait before sending a message, in hopes of batching up more than just the one) to zero by default, meaning that the aforementioned cost to get moving again should not be a thing. As I recall, in 0.9 it did not default to zero, and there was some tradeoff to setting it to such a low value. I'd presume that the producer code has been modified to eliminate or at least minimize that tradeoff.
Modern versions of Kafka seem to have pretty minimal latency as the results from here show:
2 ms (median)
3 ms (99th percentile)
14 ms (99.9th percentile)
Kafka can achieve around millisecond latency, by using synchronous messaging. With synchronous messaging, the producer does not collect messages into a patch before sending.
bin/kafka-console-producer.sh --broker-list my_broker_host:9092 --topic test --sync
The following has the same effect:
--batch-size 1
If you are using librdkafka as Kafka client library, you must also set socket.nagle.disable=True
See https://aivarsk.com/2021/11/01/low-latency-kafka-producers/ for some ideas on how to see what is taking those milliseconds.

Why ZooKeeper needs majority to run?

I've been wondering why ZooKeeper needs a majority of the machines in the ensemble to work at all. Lets say we have a very simple ensemble of 3 machines - A,B,C.
When A fails, new leader is elected - fine, everything works. When another one dies, lets say B, service is unavailable. Does it make sense? Why machine C cannot handle everything alone, until A and B are up again?
Since one machine is enough to do all the work (for example single machine ensemble works fine)...
Is there any particular reason why ZooKeeper is designed in this way? Is there a way to configure ZooKeeper that, for example ensemble is available always when at least one of N is up?
Edit:
Maybe there is a way to apply a custom algorithm of leader selection? Or define a size of quorum?
Thanks in advance.
Zookeeper is intended to distribute things reliably. If the network of systems becomes segmented, then you don't want the two halves operating independently and potentially getting out of sync, because when the failure is resolved, it won't know what to do. If you have it refuse to operate when it's got less than a majority, then you can be assured that when a failure is resolved, everything will come right back up without further intervention.
The reason to get a majority vote is to avoid a problem called "split-brain".
Basically in a network failure you don't want the two parts of the system to continue as usual. you want one to continue and the other to understand that it is not part of the cluster.
There are two main ways to achieve that one is to hold a shared resource, for instance a shared disk where the leader holds a lock, if you can see the lock you are part of the cluster if you don't you're out. If you are holding the lock you're the leader and if you don't your not. The problem with this approach is that you need that shared resource.
The other way to prevent a split-brain is majority count, if you get enough votes you are the leader. This still works with two nodes (for a quorum of 3) where the leader says it is the leader and the other node acting as a "witness" also agrees. This method is preferable as it can work in a shared nothing architecture and indeed that is what Zookeeper uses
As Michael mentioned, a node cannot know if the reason it doesn't see the other nodes in the cluster is because these nodes are down or there's a network problem - the safe bet is to say there's no quorum.
Let’s look at an example that shows how things can go wrong if the quorum (majority of running servers) is too small.
Say we have five servers and a quorum can be any set of two servers. Now say that servers s1 and s2 acknowledge that they have replicated a request to create a znode /z. The service returns to the client saying that the znode has been created. Now suppose servers s1 and s2 are partitioned away from the other servers and from clients for an arbitrarily long time, before they have a chance to replicate the new znode to the other servers. The service in this state is able to make progress because there are three servers available and it really needs only two according to our assumptions, but these three servers have never seen the new znode /z. Consequently, the request to create /z is not durable.
This is an example of the split-brain scenario. To avoid this problem, in this example the size of the quorum must be at least three, which is a majority out of the five servers in the ensemble. To make progress, the ensemble needs at least three servers available. To confirm that a request to update the state has completed successfully, this ensemble also requires that at least three servers acknowledge that they have replicated it.

Why is Chubby lockserver not multi-master?

As I understand Chubby at any given time there are 5 chubby servers. One is the master and handles coordination of writes to the quorum, and the other 4 servers are read only and forward handling of writes to the master. Writes use Paxos to maintain consistency.
Can someone explain to me why there is a distinction between the master and the 4 replicas. Why isn't Chubby multi-master? This question could also apply to Zookeeper.
Having a single master is more efficient because nodes don't have to deal with as much contention.
Both Chubby and Zookeeper implement a distributed state-machine where the point of the system is to decide a total ordering on transitions from one state to the next. It can take a lot of messages (theoretically infinite messages) to resolve a contention when multiple nodes are proposing a transition at the same time.
Paxos (and thus Chubby) uses an optimization called a "distinguished leader" where the replicas forward writes to the distinguished leader to reduce contention. (I am assuming Chubby replicas do this. If not they could, but the designers merely push that responsibility to the client.) Zookeeper does this too.
Both Chubby and Zookeeper actually do handle multiple leaders because they must deal with a leader that doesn't know it has died and then comes back from the dead. For Chubby, this is the whole point of using Paxos: eventually one of the leaders will win. (Well theoretically it may not, but we engineers do practical things like randomized backoff to make that probability tolerably small.) Zookeeper, on the other hand, assigns a non-decreasing id to each leader; and any non-current leader's transitions are rejected. This means that when a leader dies, Zookeeper has to pause and go through a reconfiguration phase before accepting new transitions.