Weird phenomenon when converting RGB to HSV manually in Matlab - matlab

I have written a small Matlab funcion which takes an image in RGB and converts it to HSV according to the conversion formulas found here.
The problem is that when I apply this to a color spectrum there is a cut in the spectrum and some values are wrong, see images (to make the comparison easier I have used the internal hsv2rgb() function to convert back to RGB. This does not happen with Matlabs own function rgb2hsv() but I can not find what I have done wrong.
This is my function
function [ I_HSV ] = RGB2HSV( I_RGB )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
[MAX, ind] = max(I_RGB,[],3);
if max(max(MAX)) > 1
I_r = I_RGB(:,:,1)/255;
I_g = I_RGB(:,:,2)/255;
I_b = I_RGB(:,:,3)/255;
MAX = max(cat(3,I_r, I_g, I_b),[],3);
else
I_r = I_RGB(:,:,1);
I_g = I_RGB(:,:,2);
I_b = I_RGB(:,:,3);
end
MIN = min(cat(3,I_r, I_g, I_b),[],3);
d = MAX - MIN;
I_V = MAX;
I_S = (MAX - MIN) ./ MAX;
I_H = zeros(size(I_V));
a = 1/6*mod(((I_g - I_b) ./ d),1);
b = 1/6*(I_b - I_r) ./ d + 1/3;
c = 1/6*(I_r - I_g) ./ d + 2/3;
H = cat(3, a, b, c);
for m=1:size(H,1);
for n=1:size(H,2);
if d(m,n) == 0
I_H(m,n) = 0;
else
I_H(m,n) = H(m,n,ind(m,n));
end
end
end
I_HSV = cat(3,I_H,I_S,I_V);
end
Original spectrum
Converted spectrum

The error was in my simplification of the calculations of a, b, and c. Changing it to the following solved the problem.
function [ I_HSV ] = RGB2HSV( I_RGB )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
[MAX, ind] = max(I_RGB,[],3);
if max(max(MAX)) > 1
I_r = I_RGB(:,:,1)/255;
I_g = I_RGB(:,:,2)/255;
I_b = I_RGB(:,:,3)/255;
MAX = max(cat(3,I_r, I_g, I_b),[],3);
else
I_r = I_RGB(:,:,1);
I_g = I_RGB(:,:,2);
I_b = I_RGB(:,:,3);
end
MIN = min(cat(3,I_r, I_g, I_b),[],3);
D = MAX - MIN;
I_V = MAX;
I_S = D ./ MAX;
I_H = zeros(size(I_V));
a = 1/6*mod(((I_g - I_b) ./ D),6);
b = 1/6*((I_b - I_r) ./ D + 2);
c = 1/6*((I_r - I_g) ./ D + 4);
H = cat(3, a, b, c);
for m=1:size(H,1);
for n=1:size(H,2);
if D(m,n) == 0
I_H(m,n) = 0;
else
I_H(m,n) = H(m,n,ind(m,n));
end
if MAX(m,n) == 0
S(m,n) = 0;
end
end
end
I_HSV = cat(3,I_H,I_S,I_V);
end

Related

Berlekamp Massey Algorithm for BCH simplified binary version

I am trying to follow Lin, Costello's explanation of the simplified BM algorithm for the binary case in page 210 of chapter 6 with no success on finding the error locator polynomial.
I'm trying to implement it in MATLAB like this:
function [locator_polynom] = compute_error_locator(syndrome, t, m, field, alpha_powers)
%
% Initial conditions for the BM algorithm
polynom_length = 2*t;
syndrome = [syndrome; zeros(3, 1)];
% Delta matrix storing the powers of alpha in the corresponding place
delta_rho = uint32(zeros(polynom_length, 1)); delta_rho(1)=1;
delta_next = uint32(zeros(polynom_length, 1));
% Premilimnary values
n_max = uint32(2^m - 1);
% Initialize step mu = 1
delta_next(1) = 1; delta_next(2) = syndrome(1); % 1 + S1*X
% The discrepancy is stored in polynomial representation as uint32 numbers
value = gf_mul_elements(delta_next(2), syndrome(2), field, alpha_powers, n_max);
discrepancy_next = bitxor(syndrome(3), value);
% The degree of the locator polynomial
locator_degree_rho = 0;
locator_degree_next = 1;
% Update all values
locator_polynom = delta_next;
delta_current = delta_next;
discrepancy_rho = syndrome(1);
discrepancy_current = discrepancy_next;
locator_degree_current = locator_degree_next;
rho = 0; % The row with the maximum value of 2mu - l starts at 1
for i = 1:t % Only the even steps are needed (so make t out of 2*t)
if discrepancy_current ~= 0
% Compute the correction factor
correction_factor = uint32(zeros(polynom_length, 1));
x_exponent = 2*(i - rho);
if (discrepancy_current == 1 || discrepancy_rho == 1)
d_mu_times_rho = discrepancy_current * discrepancy_rho;
else
alpha_discrepancy_mu = alpha_powers(discrepancy_current);
alpha_discrepancy_rho = alpha_powers(discrepancy_rho);
alpha_inver_discrepancy_rho = n_max - alpha_discrepancy_rho;
% The alpha power for dmu * drho^-1 is
alpha_d_mu_times_rho = alpha_discrepancy_mu + alpha_inver_discrepancy_rho;
% Equivalent to aux mod(2^m - 1)
alpha_d_mu_times_rho = alpha_d_mu_times_rho - ...
n_max * uint32(alpha_d_mu_times_rho > n_max);
d_mu_times_rho = field(alpha_d_mu_times_rho);
end
correction_factor(x_exponent+1) = d_mu_times_rho;
correction_factor = gf_mul_polynoms(correction_factor,...
delta_rho,...
field, alpha_powers, n_max);
% Finally we add the correction factor to get the new delta
delta_next = bitxor(delta_current, correction_factor(1:polynom_length));
% Update used data
l = polynom_length;
while delta_next(l) == 0 && l>0
l = l - 1;
end
locator_degree_next = l-1;
% Update previous maximum if the degree is higher than recorded
if (2*i - locator_degree_current) > (2*rho - locator_degree_rho)
locator_degree_rho = locator_degree_current;
delta_rho = delta_current;
discrepancy_rho = discrepancy_current;
rho = i;
end
else
% If the discrepancy is 0, the locator polynomial for this step
% is passed to the next one. It satifies all newtons' equations
% until now.
delta_next = delta_current;
end
% Compute the discrepancy for the next step
syndrome_start_index = 2 * i + 3;
discrepancy_next = syndrome(syndrome_start_index); % First value
for k = 1:locator_degree_next
value = gf_mul_elements(delta_next(k + 1), ...
syndrome(syndrome_start_index - k), ...
field, alpha_powers, n_max);
discrepancy_next = bitxor(discrepancy_next, value);
end
% Update all values
locator_polynom = delta_next;
delta_current = delta_next;
discrepancy_current = discrepancy_next;
locator_degree_current = locator_degree_next;
end
end
I'm trying to see what's wrong but I can't. It works for the examples in the book, but not always. As an aside, to compute the discrepancy S_2mu+3 is needed, but when I have only 24 syndrome coefficients how is it computed on step 11 where 2*11 + 3 is 25?
Thanks in advance!
It turns out the code is ok. I made a different implementation from Error Correction and Coding. Mathematical Methods and gives the same result. My problem is at the Chien Search.
Code for the interested:
function [c] = compute_error_locator_v2(syndrome, m, field, alpha_powers)
%
% Initial conditions for the BM algorithm
% Premilimnary values
N = length(syndrome);
n_max = uint32(2^m - 1);
polynom_length = N/2 + 1;
L = 0; % The curent length of the LFSR
% The current connection polynomial
c = uint32(zeros(polynom_length, 1)); c(1) = 1;
% The connection polynomial before last length change
p = uint32(zeros(polynom_length, 1)); p(1) = 1;
l = 1; % l is k - m, the amount of shift in update
dm = 1; % The previous discrepancy
for k = 1:2:N % For k = 1 to N in steps of 2
% ========= Compute discrepancy ==========
d = syndrome(k);
for i = 1:L
aux = gf_mul_elements(c(i+1), syndrome(k-i), field, alpha_powers, n_max);
d = bitxor(d, aux);
end
if d == 0 % No change in polynomial
l = l + 1;
else
% ======== Update c ========
t = c;
% Compute the correction factor
correction_factor = uint32(zeros(polynom_length, 1));
% This is d * dm^-1
dd_sum = modulo(alpha_powers(d) + n_max - alpha_powers(dm), n_max);
for i = 0:polynom_length - 1
if p(i+1) ~= 0
% Here we compute d*d^-1*p(x_i)
ddp_sum = modulo(dd_sum + alpha_powers(p(i+1)), n_max);
if ddp_sum == 0
correction_factor(i + l + 1) = 1;
else
correction_factor(i + l + 1) = field(ddp_sum);
end
end
end
% Finally we add the correction factor to get the new locator
c = bitxor(c, correction_factor);
if (2*L >= k) % No length change in update
l = l + 1;
else
p = t;
L = k - L;
dm = d;
l = 1;
end
end
l = l + 1;
end
end
The code comes from this implementation of the Massey algorithm

My approximate entropy script for MATLAB isn't working

This is my Approximate entropy Calculator in MATLAB. https://en.wikipedia.org/wiki/Approximate_entropy
I'm not sure why it isn't working. It's returning a negative value.Can anyone help me with this? R1 being the data.
FindSize = size(R1);
N = FindSize(1);
% N = input ('insert number of data values');
%if you want to put your own N in, take away the % from the line above
and
%insert the % before the N = FindSize(1)
%m = input ('insert m: integer representing length of data, embedding
dimension ');
m = 2;
%r = input ('insert r: positive real number for filtering, threshold
');
r = 0.2*std(R1);
for x1= R1(1:N-m+1,1)
D1 = pdist2(x1,x1);
C11 = (D1 <= r)/(N-m+1);
c1 = C11(1);
end
for i1 = 1:N-m+1
s1 = sum(log(c1));
end
phi1 = (s1/(N-m+1));
for x2= R1(1:N-m+2,1)
D2 = pdist2(x2,x2);
C21 = (D2 <= r)/(N-m+2);
c2 = C21(1);
end
for i2 = 1:N-m+2
s2 = sum(log(c2));
end
phi2 = (s2/(N-m+2));
Ap = phi1 - phi2;
Apen = Ap(1)
Following the documentation provided by the Wikipedia article, I developed this small function that calculates the approximate entropy:
function res = approximate_entropy(U,m,r)
N = numel(U);
res = zeros(1,2);
for i = [1 2]
off = m + i - 1;
off_N = N - off;
off_N1 = off_N + 1;
x = zeros(off_N1,off);
for j = 1:off
x(:,j) = U(j:off_N+j);
end
C = zeros(off_N1,1);
for j = 1:off_N1
dist = abs(x - repmat(x(j,:),off_N1,1));
C(j) = sum(~any((dist > r),2)) / off_N1;
end
res(i) = sum(log(C)) / off_N1;
end
res = res(1) - res(2);
end
I first tried to replicate the computation shown the article, and the result I obtain matches the result shown in the example:
U = repmat([85 80 89],1,17);
approximate_entropy(U,2,3)
ans =
-1.09965411068114e-05
Then I created another example that shows a case in which approximate entropy produces a meaningful result (the entropy of the first sample is always less than the entropy of the second one):
% starting variables...
s1 = repmat([10 20],1,10);
s1_m = mean(s1);
s1_s = std(s1);
s2_m = 0;
s2_s = 0;
% datasample will not always return a perfect M and S match
% so let's repeat this until equality is achieved...
while ((s1_m ~= s2_m) && (s1_s ~= s2_s))
s2 = datasample([10 20],20,'Replace',true,'Weights',[0.5 0.5]);
s2_m = mean(s2);
s2_s = std(s2);
end
m = 2;
r = 3;
ae1 = approximate_entropy(s1,m,r)
ae2 = approximate_entropy(s2,m,r)
ae1 =
0.00138568170752751
ae2 =
0.680090884817465
Finally, I tried with your sample data:
fid = fopen('O1.txt','r');
U = cell2mat(textscan(fid,'%f'));
fclose(fid);
m = 2;
r = 0.2 * std(U);
approximate_entropy(U,m,r)
ans =
1.08567461184858

Why does the first principal component show least difference in my PCA?

I am using PCA on a set of facial images in MatLab.
Creating an average face and randomizing others are working fine.
In my function vectorComparison I want to see the difference on each principal component vector when using the standard deviation. But when I use eig_face_index = 1 I see less of a difference than when I use 2, or 3 etc.
The higher indexes also seem to add more color, which could be due to noise in the eigenfaces, as I am using RGB space.
Why does my initial vector show the least difference. Shouldn't it be the other way around?
Here is all of the code I am using:
main.m
clear;clc;close all;
[imvecs,img] = loadImages();
meanval = meanValue(imvecs);
[T, D] = covarianceMatrix(imvecs, meanval);
[eigvecs, eigvals] = findEigVecs(imvecs, T, D);
eigenfaces = createEigenFaces(eigvecs, imvecs, img);
%%
[mean_image] = createAverageFace(meanval, img);
%%
[stdev_vec] = createRandomFace(eigvals, eigvecs, imvecs, meanval, img);
%%
vectorComparison(meanval, eigvecs, stdev_vec, img, mean_image);
loadImages.m
function [imvecs,img] = loadImages()
images = dir('D:My\Path\*.png');
imgPath = 'D:My\Path\';
img=imread([imgPath images(1).name]);
n=length(images);
for i = 1:n
img = imread([imgPath images(i).name]);
imvecs{i} = double(img(:));
end
return
meanValue.m
function meanval = meanValue(imvecs, imageNr)
%Creates the mean value from our images.
sumvec=imvecs{1};
for i = 2:(size(imvecs,2))
sumvec = sumvec + imvecs{i};
end
meanval = sumvec ./(size(imvecs,2));
return
covarianceMatrix.m
function [T, D] = covarianceMatrix(imvecs, meanval)
D = [];
for i = 1:size(imvecs,2),
diff = imvecs{i} - meanval;
D = [D, diff];
end
%Dimensionality reduction
T = (D' * D) ./ (size(imvecs,2));
return
findEigVecs.m
function [eigvecs, eigvals] = findEigVecs(imvecs, T, D)
[U,eigvals,V] = svd( T );
eigvecs = [];
for i = 1:size(imvecs,2),
eigvec = D * U(:,i);
eigvec = eigvec ./ sum(eigvec);
eigvecs = [eigvecs, eigvec];
end
return
createEigenFaces.m
function [eigenfaces] = createEigenFaces(eigvecs, imvecs, img)
for i = 1:size(imvecs,2),
eigface = reshape(eigvecs( : , i), size(img));
eigface = eigface - min(min(min((eigface))));
eigface = eigface ./ max(max(max((eigface))));
eigenfaces{i}=eigface;
%figure;imagesc(eigface);
end
return
createAverageFace.m
function [mean_image] = createAverageFace(meanval, img)
mean_image = reshape(meanval, size(img));
figure;imagesc(mean_image./255);
title('Average Face')
return
createRandomFace.m
function [stdev_vec] = createRandomFace(eigvals, eigvecs, imvecs, meanval, img)
stdev_vec = sqrt(diag(eigvals));
t = (100 * rand(size(imvecs,2),1) - 50) .* stdev_vec;
new_face1 = meanval + (eigvecs * t);
new_face1 = reshape(new_face1, size(img));
figure;imagesc(new_face1./255);
title('Random Face')
return
vectorComparison.m
function [] = vectorComparison(meanval, eigvecs, stdev_vec, img, mean_image)
t = zeros(17,1);
eig_face_index = 1;
t(eig_face_index) = 1000;
t = t.*stdev_vec;
new_face1 = meanval + (eigvecs * t);
new_face1 = reshape(new_face1, size(img));
new_face2 = meanval - (eigvecs * t);
new_face2 = reshape(new_face2, size(img));
figure;
title('PCA Comparison')
subplot(3,1,1), subimage(new_face1./255)
subplot(3,1,2), subimage(mean_image./255)
subplot(3,1,3), subimage(new_face2./255)
return
I found what was wrong here.
In my function findEigVals I make each vector a unit vector (length 1) by deviding by the sum of the vector itself. This is possible as long as the content of the vector does range positive entries.
However, as we cannot know if we have a vector in pos or neg direction (both equally valid), we cannot use sum here.
Instead we need to replace this with norm, matlab's way of stating normalization.
function [eigvecs, eigvals] = findEigVecs(imvecs, T, D)
[U,eigvals,V] = svd( T );
eigvecs = [];
for i = 1:size(imvecs,2),
eigvec = D * U(:,i);
eigvec = eigvec ./ norm(eigvec);
eigvecs = [eigvecs, eigvec];
end
return
If anyone is using a version of the code above, note that the random face function will give too strong values in rgb-space.
Replace the createRandomFace with the following:
stdev_vec = sqrt(diag(eigvals));
min_range = 0;
max_range = 2;
t = ((max_range - min_range)*rand(n,1)) .* stdev_vec + min_range;
new_face1 = meanval + (eigvecs * t);
new_face1 = reshape(new_face1, size(img));
figure;imagesc(new_face1./255);

Error in evaluating a function

EDIT: The code that I have pasted is too long. Basicaly I dont know how to work with the second code, If I know how calculate alpha from the second code I think my problem will be solved. I have tried a lot of input arguments for the second code but it does not work!
I have written following code to solve a convex optimization problem using Gradient descend method:
function [optimumX,optimumF,counter,gNorm,dx] = grad_descent()
x0 = [3 3]';%'//
terminationThreshold = 1e-6;
maxIterations = 100;
dxMin = 1e-6;
gNorm = inf; x = x0; counter = 0; dx = inf;
% ************************************
f = #(x1,x2) 4.*x1.^2 + 2.*x1.*x2 +8.*x2.^2 + 10.*x1 + x2;
%alpha = 0.01;
% ************************************
figure(1); clf; ezcontour(f,[-5 5 -5 5]); axis equal; hold on
f2 = #(x) f(x(1),x(2));
% gradient descent algorithm:
while and(gNorm >= terminationThreshold, and(counter <= maxIterations, dx >= dxMin))
g = grad(x);
gNorm = norm(g);
alpha = linesearch_strongwolfe(f,-g, x0, 1);
xNew = x - alpha * g;
% check step
if ~isfinite(xNew)
display(['Number of iterations: ' num2str(counter)])
error('x is inf or NaN')
end
% **************************************
plot([x(1) xNew(1)],[x(2) xNew(2)],'ko-')
refresh
% **************************************
counter = counter + 1;
dx = norm(xNew-x);
x = xNew;
end
optimumX = x;
optimumF = f2(optimumX);
counter = counter - 1;
% define the gradient of the objective
function g = grad(x)
g = [(8*x(1) + 2*x(2) +10)
(2*x(1) + 16*x(2) + 1)];
end
end
As you can see, I have commented out the alpha = 0.01; part. I want to calculate alpha via an other code. Here is the code (This code is not mine)
function alphas = linesearch_strongwolfe(f,d,x0,alpham)
alpha0 = 0;
alphap = alpha0;
c1 = 1e-4;
c2 = 0.5;
alphax = alpham*rand(1);
[fx0,gx0] = feval(f,x0,d);
fxp = fx0;
gxp = gx0;
i=1;
while (1 ~= 2)
xx = x0 + alphax*d;
[fxx,gxx] = feval(f,xx,d);
if (fxx > fx0 + c1*alphax*gx0) | ((i > 1) & (fxx >= fxp)),
alphas = zoom(f,x0,d,alphap,alphax);
return;
end
if abs(gxx) <= -c2*gx0,
alphas = alphax;
return;
end
if gxx >= 0,
alphas = zoom(f,x0,d,alphax,alphap);
return;
end
alphap = alphax;
fxp = fxx;
gxp = gxx;
alphax = alphax + (alpham-alphax)*rand(1);
i = i+1;
end
function alphas = zoom(f,x0,d,alphal,alphah)
c1 = 1e-4;
c2 = 0.5;
[fx0,gx0] = feval(f,x0,d);
while (1~=2),
alphax = 1/2*(alphal+alphah);
xx = x0 + alphax*d;
[fxx,gxx] = feval(f,xx,d);
xl = x0 + alphal*d;
fxl = feval(f,xl,d);
if ((fxx > fx0 + c1*alphax*gx0) | (fxx >= fxl)),
alphah = alphax;
else
if abs(gxx) <= -c2*gx0,
alphas = alphax;
return;
end
if gxx*(alphah-alphal) >= 0,
alphah = alphal;
end
alphal = alphax;
end
end
But I get this error:
Error in linesearch_strongwolfe (line 11) [fx0,gx0] = feval(f,x0,d);
As you can see I have written the f function and its gradient manually.
linesearch_strongwolfe(f,d,x0,alpham) takes a function f, Gradient of f, a vector x0 and a constant alpham. is there anything wrong with my declaration of f? This code works just fine if I put back alpha = 0.01;
As I see it:
x0 = [3; 3]; %2-element column vector
g = grad(x0); %2-element column vector
f = #(x1,x2) 4.*x1.^2 + 2.*x1.*x2 +8.*x2.^2 + 10.*x1 + x2;
linesearch_strongwolfe(f,-g, x0, 1); %passing variables
inside the function:
[fx0,gx0] = feval(f,x0,-g); %variable names substituted with input vars
This will in effect call
[fx0,gx0] = f(x0,-g);
but f(x0,-g) is a single 2-element column vector with these inputs. Assingning the output to two variables will not work.
You either have to define f as a proper named function (just like grad) to output 2 variables (one for each component), or edit the code of linesearch_strongwolfe to return a single variable, then slice that into 2 separate variables yourself afterwards.
If you experience a very rare kind of laziness and don't want to define a named function, you can still use an anonymous function at the cost of duplicating code for the two components (at least I couldn't come up with a cleaner solution):
f = #(x1,x2) deal(4.*x1(1)^2 + 2.*x1(1)*x2(1) +8.*x2(1)^2 + 10.*x1(1) + x2(1),...
4.*x1(2)^2 + 2.*x1(2)*x2(2) +8.*x2(2)^2 + 10.*x1(2) + x2(2));
[fx0,gx0] = f(x0,-g); %now works fine
as long as you always have 2 output variables. Note that this is more like a proof of concept, since this is ugly, inefficient, and very susceptible to typos.

Filter points using hist in matlab

I have a vector. I want to remove outliers. I got bin and no of values in that bin. I want to remove all points based on the number of elements in each bin.
Data:
d1 =[
360.471912914169
505.084636471948
514.39429429184
505.285068055647
536.321181755858
503.025854206322
534.304229816684
393.387035881967
396.497969729985
520.592172434431
421.284713703215
420.401106087984
537.05330275495
396.715779872694
514.39429429184
404.442344469518
476.846474245118
599.020867750031
429.163139144079
514.941744277933
445.426761656729
531.013596812737
374.977332648255
364.660115724218
538.306752697753
519.042387479096
1412.54699036882
405.571202133485
516.606049132218
2289.49623498271
378.228766753667
504.730621222846
358.715764917016
462.339366699398
512.429858614816
394.778786157514
366
498.760463549388
366.552861126468
355.37022947906
358.308526273099
376.745272034036
366.934599077274
536.0901883079
483.01740134285
508.975480745389
365.629593988233
536.368800360349
557.024236456548
366.776498701866
501.007025898839
330.686029339009
508.395475983019
429.563732174866
2224.68806802212
534.655786464525
518.711297351426
534.304229816684
514.941744277933
420.32368479542
367.129404978681
525.626188464768
388.329756778952
1251.30895065927
525.626188464768
412.313764019587
513.697381733643
506.675438520558
1517.71183364959
550.276294237722
543.359917550053
500.639590923451
395.129864728041];
Histogram computation:
[nelements,centers] = hist(d1);
nelements=55 13 0 0 1 1 1 0 0 2
I want to remove all points apearing less than 5 (in nelements). It means only first 2 elements in nelements( 55, 13 ) remains.
Is there any function in matlab.
You can do it along these lines:
threshold = 5;
bin_halfwidth = (centers(2)-centers(1))/2;
keep = ~any(abs(bsxfun(#minus, d1, centers(nelements<threshold))) < bin_halfwidth , 2);
d1_keep = d1(keep);
Does this do what you want?
binwidth = centers(2)-centers(1);
centersOfRemainingBins = centers(nelements>5);
remainingvals = false(length(d1),1);
for ii = 1:length(centersOfRemainingBins )
remainingvals = remainingvals | (d1>centersOfRemainingBins (ii)-binwidth/2 & d1<centersOfRemainingBins (ii)+binwidth/2);
end
d_out = d1(remainingvals);
I don't know Matlab function for this problem, but I think, that function with follow code is what are you looking for:
sizeData = size(data);
function filter_hist = filter_hist(data, binCountRemove)
if or(max(sizeData) == 0, binCountRemove < 1)
disp('Error input!');
filter_hist = [];
return;
end
[n, c] = hist(data);
sizeN = size(n);
intervalSize = c(2) - c(1);
if sizeData(1) > sizeData(2)
temp = transpose(data);
else
temp = data;
end
for i = 1:1:max(sizeN)
if n(i) < binCountRemove
a = c(i) - intervalSize / 2;
b = c(i) + intervalSize / 2;
sizeTemp = size(temp);
removeInds = [];
k = 0;
for j = 1:1:max(sizeTemp)
if and(temp(j) > a, less_equal(temp(j), b) == 1)
k = k + 1;
removeInds(k) = j;
end
end
temp(removeInds) = [];
end
end
filter_hist = transpose(temp);
%Determines when 'a' less or equal to 'b' by accuracy
function less_equal = less_equal(a, b)
delta = 10^-6; %Accuracy
if a < b
less_equal = 1;
return;
end
if abs(b - a) < delta
less_equal = 1;
return;
end
less_equal = 0;
You can do something like this
nelements=nelements((nelements >5))