I am trying to implement a stem and plot algorithm in MATLAB for educational purposes. Before I post my code, let me introduce what the steps of my approach are. Let us consider that we have two digit numbers:
A=[20 12 13 21 56 13 16 17 22 23 24];
Stems can be given by
stems=fix(A/10)
stems =
2 1 1 2 5 1 1 1 2 2 2
and leafs can be given by
leaf=fix(mod(A,10))
leaf =
0 2 3 1 6 3 6 7 2 3 4
What I have done, is to sort the stems and according to that sort leafs as well:
[stems, index]=sort(stems,'ascend')
leaf=leaf(index)
stems =
1 1 1 1 1 2 2 2 2 2 5
leaf =
2 3 3 6 7 0 1 2 3 4 6
This is the basic idea:
Count the frequency of occurrence of each number in stems
Take that many elements from leaf
Repeat this procedure for each stem, where at each step I am shortening the leaf array. So for instance for stems = 1, we have [5 1], so I will have
leaf(1:5)
ans =
2 3 3 6 7
leaf(1:5)=[]
leaf =
0 1 2 3 4 6
stems = 2 is again 5 times, so again:
leaf(1:5)
ans =
0 1 2 3 4
leaf(1:5)=[]
leaf =
6
Now for stems = 5, we have 1 leaf
leaf(1)
ans =
6
For this I used a map container and I have created the following code:
function stem_leaf_plot(v)
if ~isnumeric(v) % check that program will accept array as a integers
error( 'Input V must be numeric');
end
stems=fix(v/10);
leaf=fix(rem(v,10));
[stems, index]=sort(stems,'ascend');
leaf=leaf(index);
string_stems=num2str(stems);
%% count occurence of each stem
MAP=containers.Map();
n=length(stems); % total element of stems array
for ii=1:n
if isKey(MAP,string_stems(ii))
MAP(string_stems(ii))= MAP(string_stems(ii))+1;
else
MAP(string_stems(ii))=1;
end
end
MAP_count=length(MAP);
stem=num2str(cell2mat(keys(MAP)));
for jj=1:MAP_count
frequency=(MAP(string_stems(jj)));
fprintf('leafs of stem %d',stem(jj));
disp(leaf(1:frequency));
leaf(1:frequency)=[]; % delete elements step by step
end
end
However, the result of my code is
stem_leaf_plot(A)
leafs of stem 32 2 3 3 6
leafs of stem 49 7 0 1 2 3 4 6
What is wrong?
After suggestion of #Adriaan I used hist to count frequencies, instead of a container. Here is my updated code:
function stem_leaf_plot(v)
if ~isnumeric(v) % check that program will accept array as a integers
error( 'Input V must be numeric');
end
stems=fix(v/10);
leaf=fix(rem(v,10));
[stems, index]=sort(stems,'ascend');
leaf=leaf(index);
[a,b]=hist(stems,unique(stems));
n=length(a);
for ii=1:n
fprintf('leaf of stem %d is ',b(ii));
leaf(1:a(ii))
leaf(1:a(ii))=[];
end
>> A=[20 12 13 21 56 13 16 17 22 23 24];
>> stem_leaf_plot(A)
leaf of stem 1 is
ans =
2 3 3 6 7
leaf of stem 2 is
ans =
0 1 2 3 4
leaf of stem 5 is
ans =
6
Related
a = [1 1 1 1 2 2 2 2 3 3 3 3; 1 2 3 4 5 6 7 8 9 10 11 12]';
What is the quickest way to sum the values in column 2 that correspond to the first and last occurrence of each number in column 1?
The desired output:
1 5
2 13
3 21
EDIT: The result should be the same if the numbers in column 1 are ordered differently.
a = [2 2 2 2 1 1 1 1 3 3 3 3; 1 2 3 4 5 6 7 8 9 10 11 12]';
2 5
1 13
3 21
You can use accumarray as follows. Not sure how fast it is, especially because it uses a custom anonymous function:
[u, ~, v] = unique(a(:,1), 'stable');
s = accumarray(v, a(:,2), [], #(x) x(1)+x(end));
result = [u s];
If the values in the first column of a are always in contiguous groups, the following approach can be used as well:
ind_diff = find(diff(a(:,1))~=0);
ind_first = [1; ind_diff+1];
ind_last = [ind_diff; size(a,1)];
s = a(ind_first,2) + a(ind_last,2);
result = [unique(a(:,1), 'stable') s];
I have a vector of 13 entities in Matlab.
a=[3 4 6 8 1 5 8 9 3 7 3 6 2]
I want to append values [1 2 3 4 5] at regular intervals at position 1 5 9 13 & 17.
The final value of a looks like this.
a=[1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2].
The values with italics show the appended values.
How can I do it?
Since you are looking for regular intervals, you can take advantage of the reshape and cat function:
a = [3 4 6 8 1 5 8 9 3 7 3 6 2];
v = [1 2 3 4 5];
l = [1 5 9 13 17];
interval = l(2)-l(1)-1; %computes the interval between inserts
amax = ceil(size(a,2)/interval) * interval; %calculating maximum size for zero padding
a(amax) = 0; %zero padding to allow `reshape`
b = reshape (a,[interval,size(v,2)]); %reshape into matrix
result = reshape(vertcat (v,b), [1,(size(b,1)+1)*size(b,2)]); %insert the values into the right position and convert back into vector
%remove padded zeros
final = result(result ~= 0) %remove the zero padding.
>>final =
Columns 1 through 16
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6
Columns 17 through 18
5 2
Here's an approach using boolean-indexing -
% Inputs
a = [3 4 6 8 1 5 8 9 3 7 3 6 2]
append_vals = [1 2 3 4 5]
append_interval = 4 % Starting at 1st index
% Find out indices of regular intervals where new elements are to be inserted.
% This should create that array [1,5,9,13,17]
N_total = numel(a) + numel(append_vals)
append_idx = find(rem(0:N_total-1,append_interval)==0)
% Get boolean array with 1s at inserting indices, 0s elsewhere
append_mask = ismember(1:N_total,append_idx)
% Setup output array and insert new and old elements
out = zeros(1,N_total)
out(~append_mask) = a
out(append_mask) = append_vals
Alternatively, we can also use linear-indexing and avoid creating append_mask, like so -
% Setup output array and insert new and old elements
out = zeros(1,N_total)
out(append_idx) = append_vals
out(setdiff(1:numel(out),append_idx)) = a
a=[3 4 6 8 1 5 8 9 3 7 3 6 2]; % // Your original values
pos = [1 5 9 13 17]; % // The position of the values you want to insert
b=[1 2 3 4 5]; % // The values you want to insert
% // Pre-allocate a vector with the total size to hold the resulting values
r = zeros(size(a,2)+size(pos,2),1);
r(pos) = b % // Insert the appended values into the resulting vector first
r3 = r.' <1 % // Find the indices of the original values. These will be zero in the variable r but 1 in r3
ans =
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
ind= find(r3==1) % // Find the indices of the original values
ind =
2 3 4 6 7 8 10 11 12 14 15 16 18
r(ind) = a; % // Insert those into the resulting vector.
r.'
ans =
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2
You can use this function to append a bunch of values to an existing vector, given their positions in the new vector:
function r=append_interval(a,v,p)
% a - vector with initial values
% v - vector containing values to be inserted
% p - positions for values in v
lv=numel(v); % number of elements in v vector
la=numel(a); % number of elements in a vector
column_a=iscolumn(a); % check if a is a column- or row- wise vector
tot_elements=la+lv;
% size of r is tha max between the total number of elements in the two vectors and the higher positin in vector p (in this case missing positions in a are filled with zeros)
lr=max([max(p) tot_elements]);
% initialize r as nan vector
r=zeros(column_a*(lr-1)+1,~column_a*(lr-1)+1)/0;
% set elements in p position to the corresponding values in v
r(p)=v;
% copy values in a in the remaining positions and fill with zeros missing entries (if any)
tot_missing_values=lr-tot_elements;
if(tot_missing_values)
remaining_values=cat(2-iscolumn(a),a,zeros(column_a*(tot_missing_values-1)+1,~column_a*(tot_missing_values-1)+1));
else
remaining_values=a;
end
% insert values
r(isnan(r))=remaining_values;
You can use row-wise or column-wise vectors; the orientation of r will be the same of that of a.
Input:
a =
3 4 6 8 1 5 8 9 3 7 3 6 2
v =
1 2 3 4 5
p =
1 5 9 13 17
Output:
>> append_interval(a,v,p)
ans =
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2
Every sequence of positive positions is allowed and the function will pad for you with zeros the final vector, in case you indicate a position exceding the sum of the original vector and added items.
For example, if:
v3 =
1 2 3 4 5 6 90
p3 =
1 5 9 13 17 30 33
you get:
append_interval(a,v3,p3)
ans =
Columns 1 through 19
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2 0
Columns 20 through 33
0 0 0 0 0 0 0 0 0 0 6 0 0 90
Hope this will help.
a contains indices and their occurrences. Now the indexing needs to be changed with Hamming weight so that indices with equal hamming weight will be summed up. How to do the Hamming weight indexing? Any ready command for this in Matlab?
>> a=[1,2;2,3;5,2;10,1;12,2]
1 2
2 3
5 2
10 1
12 2
13 8
>> dec2bin(a(:,1))
ans =
0001
0010
0101
1010
1100
1101
Goal: index things by Hamming weight
HW Count
1 5 (=2+3)
2 5 (=2+1+2)
3 8 (=8)
You can do it as follows:
a = [1,2;2,3;5,2;10,1;12,2;13,8]
the following line needs to be added, to consider also a hammingweight of zero:
if nnz(a(:,1)) == numel(a(:,1)); a = [0,0;a]; end
% or just
a = [0,0;a]; %// wouldn't change the result
to get the indices
rowidx = sum( de2bi(a(:,1)), 2 )
to get the sums
sums = accumarray( rowidx+1, a(:,2) ) %// +1 to consider Hammingweight of zero
to get the Hammingweight vector
HW = unique(rowidx)
returns:
rowidx =
1
1
2
2
2
3
sums =
5
5
8
and all together:
result = [HW, sums]
%or
result = [unique(rowidx), accumarray(rowidx+1,a(:,2))]
result =
0 0
1 5
2 5
3 8
If you are bothered by the 0 0 line, filter it out
result(sum(result,2)>0,:)
The result for a = [0,2;2,3;5,2;10,1;12,2;13,8] would be:
result =
0 2
1 3
2 5
3 8
Try this -
a = [1 2
2 3
5 2
10 1
12 2
13 8]
HW = dec2bin(a(:,1)) - '0';
out = accumarray(sum(HW,2), a(:,2), [], #sum);%%// You don't need that "sum" option it seems, as that's the default operation with accumarray
final_out = [unique(sum(HW,2)) out]
Output -
a =
1 2
2 3
5 2
10 1
12 2
13 8
final_out =
1 5
2 5
3 8
i want to control the creation of random numbers in this matrix :
Mp = floor(1+(10*rand(2,20)));
mp1 = sort(Mp,2);
i want to modify this code in order to have an output like this :
1 1 2 2 3 3 3 4 5 5 6 7 7 8 9 9 10 10 10 10
1 2 3 3 3 3 3 3 4 5 6 6 6 6 7 8 9 9 9 10
i have to fill each row with all the numbers going from 1 to 10 in an increasing order and the second matrix that counts the occurences of each number should be like this :
1 2 1 2 1 2 3 1 1 2 1 1 2 1 1 2 1 2 3 4
1 1 1 2 3 4 5 6 1 1 1 2 3 4 1 1 1 2 3 1
and the most tricky matrix that i'v been looking for since the last week is the third matrix that should skim through each row of the first matrix and returns the numbers of occurences of each number and the position of the last occcurence.here is an example of how the code should work. this example show the intended result after running through the first row of the first matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (positions)
1 2
2 2
3 3
4 1
5 2
6 1
7 2
8 1
9 2
10 4
(numbers)
this example show the intended result after running through the second row of the first matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (positions)
1 1 2
2 1 2
3 3 6
4 1 1
5 3
6 1 4
7 2 1
8 1 1
9 2 3
10 4
(numbers)
so the wanted matrix must be filled up with zeros from the beginning and each time after running through each row of the first matrix, we add the new result to the previous one...
I believe the following code does everything you asked for. If I didn't understand, you need to get a lot clearer in how you pose your question...
Note - I hard coded some values / sizes. In "real code" you would never do that, obviously.
% the bit of code that generates and sorts the initial matrix:
Mp = floor(1+(10*rand(2,20)));
mp1 = sort(Mp, 2);
clc
disp(mp1)
occCount = zeros(size(mp1));
for ii = 1:size(mp1,1)
for jj = 1:size(mp1,2)
if (jj == 1)
occCount(ii,jj) = 1;
else
if (mp1(ii,jj) == mp1(ii,jj-1))
occCount(ii,jj) = occCount(ii, jj-1) + 1;
else
occCount(ii,jj) = 1;
end
end
end
end
% this is the second matrix you asked for
disp(occCount)
% now the third:
big = zeros(10, 20);
for ii = 1:size(mp1,1)
for jj = 1:10
f = find(mp1(ii,:) == jj); % index of all of them
if numel(f) > 0
last = f(end);
n = numel(f);
big(jj, last) = big(jj, last) + n;
end
end
end
disp(big)
Please see if this is indeed what you had in mind.
The following code solves both the second and third matrix generation problems with a single loop. For clarity, the second matrix M2 is the 2-by-20 array in the example containing the cumulative occurrence count. The third matrix M3 is the sparse matrix of size 10-by-20 in the example that encodes the number and position of the last occurrence of each unique value. The code only loops over the rows, using accumarray to do most of the work. It is generalized to any size and content of mp1, as long as the rows are sorted first.
% data
mp1 = [1 1 2 2 3 3 3 4 5 5 6 7 7 8 9 9 10 10 10 10;
1 2 3 3 3 3 3 3 4 5 6 6 6 6 7 8 9 9 9 10]; % the example first matrix
nuniq = max(mp1(:));
% accumulate
M2 = zeros(size(mp1));
M3 = zeros(nuniq,size(mp1,2));
for ir=1:size(mp1,1),
cumSums = accumarray(mp1(ir,:)',1:size(mp1,2),[],#numel,[],true)';
segments = arrayfun(#(x)1:x,nonzeros(cumSums),'uni',false);
M2(ir,:) = [segments{:}];
countCoords = accumarray(mp1(ir,:)',1:size(mp1,2),[],#max,[],true);
[ii,jj] = find(countCoords);
nzinds = sub2ind(size(M3),ii,nonzeros(countCoords));
M3(nzinds) = M3(nzinds) + nonzeros(cumSums);
end
I won't print the outputs because they are a bit big for the answer, and the code is runnable as is.
NOTE: For new test data, I suggest using the commands Mp = randi(10,[2,20]); mp1 = sort(Mp,2);. Or based on your request to user2875617 and his response, ensure all numbers with mp1 = sort([repmat(1:10,2,1) randi(10,[2,10])],2); but that isn't really random...
EDIT: Error in code fixed.
I am editing the previous answer to check if it is fast when mp1 is large, and apparently it is:
N = 20000; M = 200; P = 100;
mp1 = sort([repmat(1:P, M, 1), ceil(P*rand(M,N-P))], 2);
tic
% Initialise output matrices
out1 = zeros(M, N); out2 = zeros(P, N);
for gg = 1:M
% Frequencies of each row
freqs(:, 1) = mp1(gg, [find(diff(mp1(gg, :))), end]);
freqs(:, 2) = histc(mp1(gg, :), freqs(:, 1));
cumfreqs = cumsum(freqs(:, 2));
k = 1;
for hh = 1:numel(freqs(:, 1))
out1(gg, k:cumfreqs(hh)) = 1:freqs(hh, 2);
out2(freqs(hh, 1), cumfreqs(hh)) = out2(freqs(hh, 1), cumfreqs(hh)) + freqs(hh, 2);
k = cumfreqs(hh) + 1;
end
end
toc
We have p.e. i = 1:25 iterations.
Each iteration result is a 1xlength(N) cell array, where 0<=N<=25.
iteration 1: 4 5 9 10 20
iteration 2: 3 8 9 13 14 6
...
iteration 25: 1 2 3
We evaluate the results of all iterations to one matrix sorted according to frequency each value is repeated in descending order like this example:
Matrix=
Columns 1 through 13
16 22 19 25 2 5 8 14 17 21 3 12 13
6 5 4 4 3 3 3 3 3 3 2 2 2
Columns 14 through 23
18 20 1 6 7 9 10 11 15 23
2 2 1 1 1 1 1 1 1 1
Result explanation: Column 1: N == 16 is present in 6 iterations, column 2: N == 22 is present in 5 iterations etc.
If a number N isn't displayed (in that paradigm N == 4, N == 24) in any iteration, is not listed with frequency index of zero either.
I want to associate each iteration (i) to the first N it is displayed p.e. N == 9 to be present only in first iteration i = 1 and not in i = 2 too, N == 3 only to i = 2 and not in i = 25 too etc until all i's to be unique associated to N's.
Thank you in advance.
Here's a way that uses a feature of unique (i.e. that it returns the index to the first value) that was introduced in R2012a
%# make some sample data
iteration{1} = [1 2 4 6];
iteration{2} = [1 3 6];
iteration{3} = [1 2 3 4 5 6];
nIter= length(iteration);
%# create an index vector so we can associate N's with iterations
nn = cellfun(#numel,iteration);
idx = zeros(1,sum(nn));
idx([1,cumsum(nn(1:end-1))+1]) = 1;
idx = cumsum(idx); %# has 4 ones, 3 twos, 6 threes
%# create a vector of the same length as idx with all the N's
nVec = cat(2,iteration{:});
%# run `unique` on the vector to identify the first occurrence of each N
[~,firstIdx] = unique(nVec,'first');
%# create a "cleanIteration" array, where each N only appears once
cleanIter = accumarray(idx(firstIdx)',firstIdx',[nIter,1],#(x){sort(nVec(x))},{});
cleanIter =
[1x4 double]
[ 3]
[ 5]
>> cleanIter{1}
ans =
1 2 4 6
Here is another solution using accumarray. Explanations in the comments
% example data (from your question)
iteration{1} = [4 5 9 10 20 ];
iteration{2} = [3 8 9 13 14 6];
iteration{3} = [1 2 3];
niterations = length(iteration);
% create iteration numbers
% same as Jonas did in the first part of his code, but using a short loop
for i=1:niterations
idx{i} = i*ones(size(iteration{i}));
end
% count occurences of values from all iterations
% sort them in descending order
occurences = accumarray([iteration{:}]', 1);
[occ val] = sort(occurences, 1, 'descend');
% remove zero occurences and create the Matrix
nonzero = find(occ);
Matrix = [val(nonzero) occ(nonzero)]'
Matrix =
3 9 1 2 4 5 6 8 10 13 14 20
2 2 1 1 1 1 1 1 1 1 1 1
% find minimum iteration number for all occurences
% again, using accumarray with #min function
assoc = accumarray([iteration{:}]', [idx{:}]', [], #min);
nonzero = find(assoc);
result = [nonzero assoc(nonzero)]'
result =
1 2 3 4 5 6 8 9 10 13 14 20
3 3 2 1 1 2 2 1 1 2 2 1