Streamline plot of cylinder - matlab

I have made this plot of streamlines around a cylinder with a radius of 1. Is there a way to remove whats inside the cylinder and maybe even high lite the cylinder with a different colour?
clear
% make axes
xymax = 2;
x = linspace(-xymax,xymax,100);
y = linspace(-xymax,xymax,100);
% note that x and y don't include 0
[X,Y] = meshgrid(x,y);
R = sqrt(X.^2 + Y.^2);
sin_th = Y./R;
cos_th = X./R;
U = 1;
a = 1;
psi = U*(R - a*a./R).*sin_th;
figure
contour(X,Y,psi,[-3:.25:3],'-b');

You can mask what you don't want to draw with nan:
psi((Y>0 & psi<0) | (Y<0 & psi>0)) = nan;
and than draw a circle on it:
rectangle('Position', [-1 -1 2 2],'Curvature',[1 1],'EdgeColor','r')
Here is the code and result:
% make axes
xymax = 2;
x = linspace(-xymax,xymax,100);
y = linspace(-xymax,xymax,100);
% note that x and y don't include 0
% [X,Y] = meshgrid(x(x<-1 | x>1),y(y<-1 | y>1));
[X,Y] = meshgrid(x,y);
R = sqrt(X.^2 + Y.^2);
sin_th = Y./R;
cos_th = X./R;
U = 1;
a = 1;
psi = U*(R - a*a./R).*sin_th;
% mask the inner part with nans:
psi((Y>0 & psi<0) | (Y<0 & psi>0)) = nan;
contour(X,Y,psi,[-3:0.25:3],'-b');
% draw a circle:
rectangle('Position', [-1 -1 2 2],'Curvature',[1 1],'EdgeColor','r')
axis equal
You can try also changing directly X and Y (instead of Y and psi):
psi(Y>-1 & X>-1 & Y<1 & X<1) = nan;
but the result is a bit different.

This is counter-intuitive, but the rectangle function can be used to draw a circle!
hold on
rectangle('Position',[-R,-R,2*R,2*R],'Curvature',[1,1],'FaceColor',[1 1 0])
Feel free to play around with the line properties too ('EdgeColor' and 'LineWidth')
https://www.mathworks.com/help/matlab/ref/rectangle.html

Related

How do I label lines in a MatLab plot?

What my plot looks like
What the plot should look like
The code is working like it should but im trying to get the labels to show up on each line from (1-8). Just like the picture above.
I have read a bunch of posts and tried to search Matlab but i havent been able to figure it out.
clc;clear;close all;
V_inf = 20; % freestream velocity
R = 1; % cylinder radius
n = 8; % number of panels
d_theta = 2*pi/n; % resolution of angles
alpha = 0; % angle of attack
theta = pi+pi/n:-d_theta:-pi+pi/n; % angles of boundary points of panels
X = R*cos(theta); % X coordinates of boundary points of panels
Y = R*sin(theta); % Y coordinates of boundary points of panels
Phi = zeros(n,1); % angle from Vinf to bottom of panel
beta = zeros(n,1); % angle from Vinf to outward normal of panel
conX = zeros(n,1); % X coordinates of control points
conY = zeros(n,1); % Y coordinates of control points
S = zeros(n,1); % panel length
for i = 1:n
Phi(i) = -alpha + atan2((Y(i+1)-Y(i)),(X(i+1)-X(i)));
beta(i) = Phi(i)+pi/2;
if beta(i)>2*pi, beta(i)=beta(i)-2*pi;
elseif beta(i)<0, beta(i)=beta(i)+2*pi; end
conX(i) = (X(i+1)+X(i))/2;
conY(i) = (Y(i+1)+Y(i))/2;
S(i) = sqrt((X(i+1)-X(i))^2 + (Y(i+1)-Y(i))^2);
end
close all
plot(R*cos(0:0.01:2*pi),R*sin(0:0.01:2*pi),'b', X,Y,'r',conX,conY,'g^');
axis equal; legend('Exact shape','Panel approximation','Control points')
xlabel('x, m'); ylabel('y, m'); title('Fig. 1 Panel layout (n = 8, R = 1m)');
Possibly plotting the labels along the points of a circle using the text() function may suffice. There's some shifting of points and flipping that needs to be done to get the order you wish but otherwise it's just 8 points taken along a circle that is smaller in diameter in comparison to the octagon. An alternative would be using the green triangles as reference instead but that involves more math. As long as your octagon is expected to be symmetrical vertically and horizontally this should work alright.
clc;clear;close all;
V_inf = 20; % freestream velocity
R = 1; % cylinder radius
n = 8; % number of panels
d_theta = 2*pi/n; % resolution of angles
alpha = 0; % angle of attack
theta = pi+pi/n:-d_theta:-pi+pi/n; % angles of boundary points of panels
X = R*cos(theta); % X coordinates of boundary points of panels
Y = R*sin(theta); % Y coordinates of boundary points of panels
Phi = zeros(n,1); % angle from Vinf to bottom of panel
beta = zeros(n,1); % angle from Vinf to outward normal of panel
conX = zeros(n,1); % X coordinates of control points
conY = zeros(n,1); % Y coordinates of control points
S = zeros(n,1); % panel length
for i = 1:n
Phi(i) = -alpha + atan2((Y(i+1)-Y(i)),(X(i+1)-X(i)));
beta(i) = Phi(i)+pi/2;
if beta(i)>2*pi, beta(i)=beta(i)-2*pi;
elseif beta(i)<0, beta(i)=beta(i)+2*pi; end
conX(i) = (X(i+1)+X(i))/2;
conY(i) = (Y(i+1)+Y(i))/2;
S(i) = sqrt((X(i+1)-X(i))^2 + (Y(i+1)-Y(i))^2);
end
close all
plot(R*cos(0:0.01:2*pi),R*sin(0:0.01:2*pi),'b', X,Y,'r',conX,conY,'g^');
axis equal; legend('Exact shape','Panel approximation','Control points')
xlabel('x, m'); ylabel('y, m'); title('Fig. 1 Panel layout (n = 8, R = 1m)');
%*************************************************************************%
%ADDING LABELS BY PLOTTING LABELS ALONG CIRCLE%
%*************************************************************************%
Radius = 0.8;
Number_Of_Data_Points = 9;
theta = linspace(0,2*pi,Number_Of_Data_Points);
X_Circle = Radius*cos(theta);
X_Circle = X_Circle(1:end-1);
Y_Circle = Radius*sin(theta);
Y_Circle = Y_Circle(1:end-1);
X_Circle = flip(circshift(X_Circle,3));
Y_Circle = flip(circshift(Y_Circle,3));
for Point_Index = 1: numel(conX)
X_Displacement = X_Circle(Point_Index);
Y_Displacement = Y_Circle(Point_Index);
text(X_Displacement,Y_Displacement,num2str(Point_Index),'HorizontalAlignment','center','fontsize',20);
end
To Plot on Control Points:
%*************************************************************************%
%ADDING LABELS BY PLOTTING LABELS ALONG CONTROL POINTS%
%*************************************************************************%
for Point_Index = 1: numel(conX)
text(conX(Point_Index),conY(Point_Index),num2str(Point_Index),'HorizontalAlignment','center','fontsize',20);
end

Making parametric plot with matlab

Is it possible to plot and make my x and y axis be depended on a parameter?
For example, I'd like that my x axis will be divided to 0 1/10L 2/10L 3/10L....L
and to plot the function on that exact axis, is it possible?
This is what I tried:
x = 0:0.1*L:10*L
plot(x,func1(x))
hold on
plot(x+xShift,func2(x)+yShift)
grid on
the shifts I'm adding are just some shifts because I'd like the second function to start from a different x and y.
This should do the trick:
L = 4;
xShift = 5;
yShift = 2;
y = #(x) x .^ 2;
x = 0:(0.1*L):(10*L);
x_shifted = x + xShift;
y = y(x);
y_shifted = y + yShift;
plot(x,y)
hold on;
plot(x_shifted,y_shifted)
hold off;
grid on;
ticks = 0:(10*L) + xShift;
set(gca,'XTick',ticks);
lim = max(y_shifted);
set(gca,'YLim',[0 max(y_shifted)]);
Output:

Output of streamline in Matlab is empty

I want to use streamline to show a vector field. The vector field is singular in a point. I want to remove regions near the singularity (fo example regions which their distance to singularity is less than 1). I wrote below code but it doesn't show anything. Could anyone help me?
clear all;
close all;
r1 = 1; r2 = 5; % Radii of your circles
x_0 = 0; y_0 = 0; % Centre of circles
[x,y] = meshgrid(x_0-r2:0.2:x_0+r2,y_0-r2:0.2:y_0+r2); % meshgrid of points
idx = ((x-x_0).^2 + (y-y_0).^2 > r1^2 & (x-x_0).^2 + (y-y_0).^2 < r2^2);
x = sort(x(idx));
[x, index] = unique(x);
y = sort(y(idx));
[y, index] = unique(y);
U=cos(x)/sqrt(x.^2+y.^2);
V=sin(x)/sqrt(x.^2+y.^2);
streamslice(x,y,U,V);
The problem with your code is that U and V are all zeros, so you get white space. The reason for that is that you don't use elementwise division with ./. So as a first step you should write:
U = cos(x)./sqrt(x.^2+y.^2);
V = sin(x)./sqrt(x.^2+y.^2);
Now U and V are not zeros but are also not matrices anymore, so they are not a valid input for streamslice. The reason for that is that x and y are converted to vectors when calling:
x = sort(x(idx));
y = sort(y(idx));
My guess is that you can remove all this indexing, and simply write:
r1 = 1; r2 = 5; % Radii of your circles
x_0 = 0; y_0 = 0; % Centre of circles
[x,y] = meshgrid(x_0-r2:0.2:x_0+r2,y_0-r2:0.2:y_0+r2); % meshgrid of points
U = cos(x)./sqrt(x.^2+y.^2);
V = sin(x)./sqrt(x.^2+y.^2);
streamslice(x,y,U,V);
so you get:
I think you misunderstood the concept of streamslice. Is this you expecting?
close all;
r1 = 1; r2 = 5; % Radii of your circles
x_0 = 0; y_0 = 0; % Centre of circles
[xx,yy] = meshgrid(x_0-r2:0.2:x_0+r2,y_0-r2:0.2:y_0+r2); % meshgrid of points
% idx = ((xx-x_0).^2 + (yy-y_0).^2 > r1^2 & (xx-x_0).^2 + (yy-y_0).^2 < r2^2);
% x = sort(xx(idx));
% [x, index] = unique(x);
% y = sort(yy(idx));
% [y, index] = unique(y);
U=cos(xx)./sqrt(xx.^2+yy.^2);
V=sin(xx)./sqrt(xx.^2+yy.^2);
streamslice(xx,yy,U,V);

How to plot a filled circle?

The below code plots circles in Matlab. How can I specify the MarkerEdgeColor and MarkerFaceColor in it.
function plot_model
exit_agents=csvread('C:\Users\sony\Desktop\latest_mixed_crowds\December\exit_agents.csv');
%scatter(exit_agents(:,2),exit_agents(:,3),pi*.25^2,'filled');
for ii =1:size(exit_agents,1),
circle(exit_agents(ii,2),exit_agents(ii,3),0.25);
end
end
function h = circle(x,y,r)
hold on
th = 0:pi/50:2*pi;
xunit = r * cos(th) + x;
yunit = r * sin(th) + y;
h = plot(xunit, yunit);
hold off
end
Using plot and scatter scales them weirdly when zooming. This is not what I wish for.
There are various options to plot circles. The easiest is, to actually plot a filled rectangle with full curvature:
%// radius
r = 2;
%// center
c = [3 3];
pos = [c-r 2*r 2*r];
r = rectangle('Position',pos,'Curvature',[1 1], 'FaceColor', 'red', 'Edgecolor','none')
axis equal
With the update of the graphics engine with R2014b this is really smooth:
If you have an older version of Matlab than R2014b, you will need to stick with your trigonometric approach, but use fill to get it filled:
%// radius
r = 2;
%// center
c = [3 3];
%// number of points
n = 1000;
%// running variable
t = linspace(0,2*pi,n);
x = c(1) + r*sin(t);
y = c(2) + r*cos(t);
%// draw filled polygon
fill(x,y,[1,1,1],'FaceColor','red','EdgeColor','none')
axis equal
The "resolution" can be freely scaled by the number of points n.
Your function could then look like
function h = circle(x,y,r,MarkerFaceColor,MarkerEdgeColor)
hold on
c = [x y];
pos = [c-r 2*r 2*r];
r = rectangle('Position',pos,'Curvature',[1 1], ...
'FaceColor', MarkerFaceColor, 'Edgecolor',MarkerEdgeColor)
hold off
end

In matlab, how to use k means to make 30 clusters with circle around each cluster and mark the center?

In matlab, if I have a code which draws a circle and generates 100 random points inside it. I want to use k means to cluster these 100 points into 30 clusters with a circle around each cluster to differentiate between the clusters and i want to mark the center if each cluster.this is the code of the circle and the 100 random points inside it . Any help please ?
%// Set parameters
R =250; %// radius
C = [0 0]; %// center [x y]
N = 100; %// number of points inside circle
%// generate circle boundary
t = linspace(0, 2*pi,100);
x = R*cos(t) + C(1);
y = R*sin(t) + C(2);
%// generate random points inside it
th = 2*pi*rand(N,1);
r = R*randnlimit(0, 1, 0.5, 1, [N 1]);
xR = r.*cos(th) + C(1);
yR = r.*sin(th) + C(2);
%// Plot everything
figure(1), clf, hold on
% subplot(1,N0,1);
plot(x,y,'b');
hold on
text(0,0,'C')
plot(xR,yR,'p')
axis equal
zR=cell(N,1);
for i=1:N
zR{i,1}= [xR(i) yR(i)];
end
m=cell2mat(zR);
function clusterCircle()
%// Set parameters
R = 250; %// radius
C = [0 0]; %// center [x y]
N = 100; %// number of points inside circle
k = 30; %// number of clusters
%// generate circle boundary
t = linspace(0, 2*pi, 100);
x = R*cos(t) + C(1);
y = R*sin(t) + C(2);
%// generate random points inside it
th = 2*pi*rand(N,1);
r = R*randnlimit(0, 1, 0.5, 1, [N 1]);
xR = r.*cos(th) + C(1);
yR = r.*sin(th) + C(2);
%// some simple k-means:
% initial centroids:
% -> use different method, if k > N
% -> can be done more reasonable (e.g. run k-Means for different
% seeds, select seeds equidistant, etc.)
xC = xR(1:k)';
yC = yR(1:k)';
% run:
clusters = zeros(N,1);
clusters_old = ones(N,1);
while sum((clusters - clusters_old).^2) > 0
clusters_old = clusters;
[~,clusters] = min((bsxfun(#minus,xR,xC)).^2 + ...
(bsxfun(#minus,yR,yC)).^2 , [] , 2);
for kIdx = 1:k
xC(kIdx) = mean(xR(clusters==kIdx));
yC(kIdx) = mean(yR(clusters==kIdx));
end
end
%// Plot everything
figure(1);
clf;
hold on;
% -> plot circle and center
text(C(1),C(2),'C');
plot(x,y,'k');
% -> plot clusters
co = hsv(k);
for kIdx = 1:k
% plot cluster points
plot(xR(clusters==kIdx),yR(clusters==kIdx),'p','Color',co(kIdx,:));
% plot cluster circle
maxR = sqrt(max((xR(clusters==kIdx)-xC(kIdx)).^2 + ...
(yR(clusters==kIdx)-yC(kIdx)).^2));
x = maxR*cos(t) + xC(kIdx);
y = maxR*sin(t) + yC(kIdx);
plot(x,y,'Color',co(kIdx,:));
% plot cluster center
text(xC(kIdx),yC(kIdx),num2str(kIdx));
end
axis equal
end
%// creates random numbers, not optimized!
function rn = randnlimit(a,b,mu,sigma,sz)
rn = zeros(sz);
for idx = 1:prod(sz)
searchOn = true;
while searchOn
rn_loc = randn(1) * sigma + mu;
if rn_loc >= a && rn_loc <= b
searchOn = false;
end
end
rn(idx) = rn_loc;
end
end