K-fold Cross-Validation - initialise network after each fold or not? - matlab

I mostly understand how k-fold cross-validation works and have begun implementing it into my MATLAB scripts, however I have two questions.
When using it to select network features (hidden units, weight decay prior and no. iterations in my case). Should I re-intialise the weights after each 'fold', or should I just feed my next training fold into the already trained network (it has weights that have been optimised for the previous fold) ?
It seems that doing the latter should give lower errors as the previous fold of data will be a good approximation of the next, and so the weights will be closer than those initialised randomly from a gaussian distribution.
Additionally, having validated the network using k-fold validation, and chosen network hyper parameters etc., and I want to start using the network, am I right in thinking that I should stop using k-fold validation and just train once, using all of the available data?
Many thanks for any help.

Yes you should reinitialize the weights after each fold, in order to start with a "blank" network. If you don't do this, then each fold will "leak" into each other, and that's not what K-Fold CV is supposed to do.
After finding the best hyperparameters, yes, you can train it with all the available data. Just remember to keep some hold-out testing data for final testing.

Related

How to deal with the randomness of NN training process?

Consider the training process of deep FF neural network using mini-batch gradient descent. As far as I understand, at each epoch of the training we have different random set of mini-batches. Then iterating over all mini batches and computing the gradients of the NN parameters we will get random gradients at each iteration and, therefore, random directions for the model parameters to minimize the cost function. Let's imagine we fixed the hyperparameters of the training algorithm and started the training process again and again, then we would end up with models, which completely differs from each other, because in those trainings the changes of model parameters were different.
1) Is it always the case when we use such random based training algorithms?
2) If it is so, where is the guaranty that training the NN one more time with the best hyperparameters found during the previous trainings and validations will yield us the best model again?
3) Is it possible to find such hyperparameters, which will always yield the best models?
Neural Network are solving a optimization problem, As long as it is computing a gradient in right direction but can be random, it doesn't hurt its objective to generalize over data. It can stuck in some local optima. But there are many good methods like Adam, RMSProp, momentum based etc, by which it can accomplish its objective.
Another reason, when you say mini-batch, there is at least some sample by which it can generalize over those sample, there can be fluctuation in the error rate, and but at least it can give us a local solution.
Even, at each random sampling, these mini-batch have different-2 sample, which helps in generalize well over the complete distribution.
For hyperparameter selection, you need to do tuning and validate result on unseen data, there is no straight forward method to choose these.

i need a way to train a neural network other than backpropagation

This is an on-going venture and some details are purposefully obfuscated.
I have a box that has several inputs and one output. The output voltage changes as the input voltages are changed. The desirability of the output sequence cannot be evaluated until many states pass and a look back process is evaluated.
I want to design a neural network that takes a number of outputs from the box as input and produce the correct input settings for the box to produce the optimal next output.
I cannot train this network using backpropagation. How do I train this network?
Genetic algorithm would be a good candidate here. A chromosome could encode the weights of the neural network. After evaluation you assign a fitness value to the chromosomes based on their performance. Chromosomes with higher fitness value have a higher chance to reproduce, helping to generate better performing chromosomes in the next generation.
Encoding the weights is a relatively simple solution, more complex ones could even define the topology of the network.
You might find some additional helpful information here:
http://en.wikipedia.org/wiki/Neuroevolution
Hillclimbing is the simplest optimization algorithm to implement. Just randomly modify the weights, see if it does better, if not reset them and try again. It's also generally faster than genetic algorithms. However it is prone to getting stuck in local optima, so try running it several times and selecting the best result.

Neural networks: classification using Encog

I'm trying to get started using neural networks for a classification problem. I chose to use the Encog 3.x library as I'm working on the JVM (in Scala). Please let me know if this problem is better handled by another library.
I've been using resilient backpropagation. I have 1 hidden layer, and e.g. 3 output neurons, one for each of the 3 target categories. So ideal outputs are either 1/0/0, 0/1/0 or 0/0/1. Now, the problem is that the training tries to minimize the error, e.g. turn 0.6/0.2/0.2 into 0.8/0.1/0.1 if the ideal output is 1/0/0. But since I'm picking the highest value as the predicted category, this doesn't matter for me, and I'd want the training to spend more effort in actually reducing the number of wrong predictions.
So I learnt that I should use a softmax function as the output (although it is unclear to me if this becomes a 4th layer or I should just replace the activation function of the 3rd layer with softmax), and then have the training reduce the cross entropy. Now I think that this cross entropy needs to be calculated either over the entire network or over the entire output layer, but the ErrorFunction that one can customize calculates the error on a neuron-by-neuron basis (reads array of ideal inputs and actual inputs, writes array of error values). So how does one actually do cross entropy minimization using Encog (or which other JVM-based library should I choose)?
I'm also working with Encog, but in Java, though I don't think it makes a real difference. I have similar problem and as far as I know you have to write your own function that minimizes cross entropy.
And as I understand it, softmax should just replace your 3rd layer.

ANN different results for same train-test sets

I'm implementing a neural network for a supervised classification task in MATLAB.
I have a training set and a test set to evaluate the results.
The problem is that every time I train the network for the same training set I get very different results (sometimes I get a 95% classification accuracy and sometimes like 60%) for the same test set.
Now I know this is because I get different initial weights and I know that I can use 'seed' to set the same initial weights but the question is what does this say about my data and what is the right way to look at this? How do I define the accuracy I'm getting using my designed ANN? Is there a protocol for this (like running the ANN 50 times and get an average accuracy or something)?
Thanks
Make sure your test set is large enough compared to the training set (e.g. 10% of the overall data) and check it regarding diversity. If your test set only covers very specific cases, this could be a reason. Also make sure you always use the same test set. Alternatively you should google the term cross-validation.
Furthermore, observing good training set accuracy while observing bad test set accuracy is a sign for overfitting. Try to apply regularization like a simple L2 weight decay (simply multiply your weight matrices with e.g. 0.999 after each weight update). Depending on your data, Dropout or L1 regularization could also help (especially if you have a lot of redundancies in your input data). Also try to choose a smaller network topology (fewer layers and/or fewer neurons per layer).
To speed up training, you could also try alternative learning algorithms like RPROP+, RPROP- or RMSProp instead of plain backpropagation.
Looks like your ANN is not converging to the optimal set of weights. Without further details of the ANN model, I cannot pinpoint the problem, but I would try increasing the number of iterations.

Optimization of Neural Network input data

I'm trying to build an app to detect images which are advertisements from the webpages. Once I detect those I`ll not be allowing those to be displayed on the client side.
Basically I'm using Back-propagation algorithm to train the neural network using the dataset given here: http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements.
But in that dataset no. of attributes are very high. In fact one of the mentors of the project told me that If you train the Neural Network with that many attributes, it'll take lots of time to get trained. So is there a way to optimize the input dataset? Or I just have to use that many attributes?
1558 is actually a modest number of features/attributes. The # of instances(3279) is also small. The problem is not on the dataset side, but on the training algorithm side.
ANN is slow in training, I'd suggest you to use a logistic regression or svm. Both of them are very fast to train. Especially, svm has a lot of fast algorithms.
In this dataset, you are actually analyzing text, but not image. I think a linear family classifier, i.e. logistic regression or svm, is better for your job.
If you are using for production and you cannot use open source code. Logistic regression is very easy to implement compared to a good ANN and SVM.
If you decide to use logistic regression or SVM, I can future recommend some articles or source code for you to refer.
If you're actually using a backpropagation network with 1558 input nodes and only 3279 samples, then the training time is the least of your problems: Even if you have a very small network with only one hidden layer containing 10 neurons, you have 1558*10 weights between the input layer and the hidden layer. How can you expect to get a good estimate for 15580 degrees of freedom from only 3279 samples? (And that simple calculation doesn't even take the "curse of dimensionality" into account)
You have to analyze your data to find out how to optimize it. Try to understand your input data: Which (tuples of) features are (jointly) statistically significant? (use standard statistical methods for this) Are some features redundant? (Principal component analysis is a good stating point for this.) Don't expect the artificial neural network to do that work for you.
Also: remeber Duda&Hart's famous "no-free-lunch-theorem": No classification algorithm works for every problem. And for any classification algorithm X, there is a problem where flipping a coin leads to better results than X. If you take this into account, deciding what algorithm to use before analyzing your data might not be a smart idea. You might well have picked the algorithm that actually performs worse than blind guessing on your specific problem! (By the way: Duda&Hart&Storks's book about pattern classification is a great starting point to learn about this, if you haven't read it yet.)
aplly a seperate ANN for each category of features
for example
457 inputs 1 output for url terms ( ANN1 )
495 inputs 1 output for origurl ( ANN2 )
...
then train all of them
use another main ANN to join results