Kafka Consumer Group Id and consumer rebalance issue - apache-kafka

I I am using Kafka 0.10.0 and zookeeper 3.4.6 in my production server .I am having 20 topics each with approx 50 partitions. I am having the total of 100 consumers each subscribed to different topics and partitions .All the consumers are having the same groupId. So will this be the case that if a consumer is added or removed for a specific topic then the consumers attached to the different topic will also undergo rebalancing?
My consumer code is:
public static void main(String[] args) {
String groupId = "prod"
String topicRegex = args[0]
String consumerTimeOut = "10000"
int n_threads = 1
if (args && args.size() > 1) {
ConfigLoader.init(args[1])
}
else {
ConfigLoader.init('development')
}
if(args && args.size() > 2 && args[2].isInteger()){
n_threads = (args[2]).toInteger()
}
ExecutorService executor = Executors.newFixedThreadPool(n_threads)
addShutdownHook(executor)
String zooKeeper = ConfigLoader.conf.zookeeper.hostName
List<Runnable> taskList = []
for(int i = 0; i < n_threads; i++){
KafkaConsumer example = new KafkaConsumer(zooKeeper, groupId, topicRegex, consumerTimeOut)
taskList.add(example)
}
taskList.each{ task ->
executor.submit(task)
}
executor.shutdown()
executor.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS)
}
private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId, String consumerTimeOut) {
Properties props = new Properties()
props.put("zookeeper.connect", a_zookeeper)
props.put("group.id", a_groupId)
props.put("zookeeper.session.timeout.ms", "10000")
props.put("rebalance.backoff.ms","10000")
props.put("zookeeper.sync.time.ms","200")
props.put("rebalance.max.retries","10")
props.put("enable.auto.commit", "false")
props.put("consumer.timeout.ms", consumerTimeOut)
props.put("auto.offset.reset", "smallest")
return new ConsumerConfig(props)
}
public void run(String topicRegex) {
String threadName = Thread.currentThread().getName()
logger.info("{} [{}] main Starting", TAG, threadName)
Map<String, Integer> topicCountMap = new HashMap<String, Integer>()
List<KafkaStream<byte[], byte[]>> streams = consumer.createMessageStreamsByFilter(new Whitelist(topicRegex),1)
ConsumerConnector consumerConnector = consumer
for (final KafkaStream stream : streams) {
ConsumerIterator<byte[], byte[]> consumerIterator = stream.iterator()
List<Object> batchTypeObjList = []
String topic
String topicObjectType
String method
String className
String deserialzer
Integer batchSize = 200
while (true){
boolean hasNext = false
try {
hasNext = consumerIterator.hasNext()
} catch (InterruptedException interruptedException) {
//if (exception instanceof InterruptedException) {
logger.error("{} [{}]Interrupted Exception: {}", TAG, threadName, interruptedException.getMessage())
throw interruptedException
//} else {
} catch(ConsumerTimeoutException timeoutException){
logger.error("{} [{}] Timeout Exception: {}", TAG, threadName, timeoutException.getMessage())
topicListMap.each{ eachTopic, value ->
batchTypeObjList = topicListMap.get(eachTopic)
if(batchTypeObjList != null && !batchTypeObjList.isEmpty()) {
def dbObject = topicConfigMap.get(eachTopic)
logger.debug("{} [{}] Timeout Happened.. Indexing remaining objects in list for topic: {}", TAG, threadName, eachTopic)
className = dbObject.get(KafkaTopicConfigEntity.CLASS_NAME_KEY)
method = dbObject.get(KafkaTopicConfigEntity.METHOD_NAME_KEY)
int sleepTime = 0
if(dbObject.get(KafkaTopicConfigEntity.CONUSMER_SLEEP_IN_MS) != null)
sleepTime = dbObject.get(KafkaTopicConfigEntity.CONUSMER_SLEEP_IN_MS)?.toInteger()
executeMethod(className, method, batchTypeObjList)
batchTypeObjList.clear()
topicListMap.put(eachTopic,batchTypeObjList)
sleep(sleepTime)
}
}
consumer.commitOffsets()
continue
} catch(Exception exception){
logger.error("{} [{}]Exception: {}", TAG, threadName, exception.getMessage())
throw exception
}
if(hasNext) {
def consumerObj = consumerIterator.next()
logger.debug("{} [{}] partition name: {}", TAG, threadName, consumerObj.partition())
topic = consumerObj.topic()
DBObject dbObject = topicConfigMap.get(topic)
logger.debug("{} [{}] topic name: {}", TAG, threadName, topic)
topicObjectType = dbObject.get(KafkaTopicConfigEntity.TOPIC_OBJECT_TYPE_KEY)
deserialzer = KafkaConfig.DEFAULT_DESERIALIZER
if(KafkaConfig.DESERIALIZER_MAP.containsKey(topicObjectType)){
deserialzer = KafkaConfig.DESERIALIZER_MAP.get(topicObjectType)
}
className = dbObject.get(KafkaTopicConfigEntity.CLASS_NAME_KEY)
method = dbObject.get(KafkaTopicConfigEntity.METHOD_NAME_KEY)
boolean isBatchJob = dbObject.get(KafkaTopicConfigEntity.IS_BATCH_JOB_KEY)
if(dbObject.get(KafkaTopicConfigEntity.BATCH_SIZE_KEY) != null)
batchSize = dbObject.get(KafkaTopicConfigEntity.BATCH_SIZE_KEY)
else
batchSize = 1
Object queueObj = (Class.forName(deserialzer)).deserialize(consumerObj.message())
int sleepTime = 0
if(dbObject.get(KafkaTopicConfigEntity.CONUSMER_SLEEP_IN_MS) != null)
sleepTime = dbObject.get(KafkaTopicConfigEntity.CONUSMER_SLEEP_IN_MS)?.toInteger()
if(isBatchJob == true){
batchTypeObjList = topicListMap.get(topic)
batchTypeObjList.add(queueObj)
if(batchTypeObjList.size() == batchSize) {
executeMethod(className, method, batchTypeObjList)
batchTypeObjList.clear()
sleep(sleepTime)
}
topicListMap.put(topic,batchTypeObjList)
} else {
executeMethod(className, method, queueObj)
sleep(sleepTime)
}
consumer.commitOffsets()
}
}
logger.debug("{} [{}] Shutting Down Process ", TAG, threadName)
}
}
Any help will be appriciated.

Whenever a consumer leaves or joins a consumer group, the entire group undergoes a rebalance. Since the group tracks all partitions across all topics that its members are subscribed to you are right in thinking, that this can lead to rebalancing of consumers that are not subscribed to the topic in question.
Please see below for a small test illustrating this point, I have a broker with two topics test1 (2 partitions) and test2 (9 partitions) and am starting two consumers, both with the same consumer group, each subscribes to only one of the two topics. As you can see, when consumer2 joins the group, consumer1 gets all partitions revoked and reassigned, because the entire group rebalances.
Subscribing consumer1 to topic test1
Starting thread for consumer1
Polling consumer1
consumer1 got 0 partitions revoked!
consumer1 got 2 partitions assigned!
Polling consumer1
Polling consumer1
Polling consumer1
Subscribing consumer2 to topic test2
Starting thread for consumer2
Polling consumer2
Polling consumer1
consumer2 got 0 partitions revoked!
Polling consumer1
Polling consumer1
consumer1 got 2 partitions revoked!
consumer2 got 9 partitions assigned!
consumer1 got 2 partitions assigned!
Polling consumer2
Polling consumer1
Polling consumer2
Polling consumer1
Polling consumer2

Related

How do I set in Kafka to not consume from where it left?

I have a Kafka consumer in Golang. I don't want to consume from where I left last time, but rather current message. How can I do it?
You can set enable.auto.commit to false and auto.offset.reset to latest for your consumer group id. This means kafka will not be automatically committing your offsets.
With auto commit disabled, your consumer group progress would not be saved (unless you do manually). So whenever the consumer is restarted for whatever reason, it does not find its progress saved and resets to the latest offset.
set a new group.id to your consumer.
Then use auto.offset.reset to define the behavior of this new consumer group, in you case: latest
Apache kafka consumer api provides a method called kafkaConsumer.seekToEnd() which can be used to ignore the existing messages and only consume messages published after the consumer has been started without changing the current group ID of the consumer.
Below is the implementation of the same. The program takes 3 arguments : topic name, group ID and offset range (0 to start from beginning, - 1 to receive messages after consumer has started, other than 0 or - 1 will imply to to consumer to consume from that offset)
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.WakeupException;
import java.util.*;
public class Consumer {
private static Scanner in;
public static void main(String[] argv)throws Exception{
if (argv.length != 3) {
System.err.printf("Usage: %s <topicName> <groupId> <startingOffset>\n",
Consumer.class.getSimpleName());
System.exit(-1);
}
in = new Scanner(System.in);
String topicName = argv[0];
String groupId = argv[1];
final long startingOffset = Long.parseLong(argv[2]);
ConsumerThread consumerThread = new ConsumerThread(topicName,groupId,startingOffset);
consumerThread.start();
String line = "";
while (!line.equals("exit")) {
line = in.next();
}
consumerThread.getKafkaConsumer().wakeup();
System.out.println("Stopping consumer .....");
consumerThread.join();
}
private static class ConsumerThread extends Thread{
private String topicName;
private String groupId;
private long startingOffset;
private KafkaConsumer<String,String> kafkaConsumer;
public ConsumerThread(String topicName, String groupId, long startingOffset){
this.topicName = topicName;
this.groupId = groupId;
this.startingOffset=startingOffset;
}
public void run() {
Properties configProperties = new Properties();
configProperties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
configProperties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArrayDeserializer");
configProperties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
configProperties.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
configProperties.put(ConsumerConfig.CLIENT_ID_CONFIG, "offset123");
configProperties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
configProperties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
//Figure out where to start processing messages from
kafkaConsumer = new KafkaConsumer<String, String>(configProperties);
kafkaConsumer.subscribe(Arrays.asList(topicName), new ConsumerRebalanceListener() {
public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
System.out.printf("%s topic-partitions are revoked from this consumer\n", Arrays.toString(partitions.toArray()));
}
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
System.out.printf("%s topic-partitions are assigned to this consumer\n", Arrays.toString(partitions.toArray()));
Iterator<TopicPartition> topicPartitionIterator = partitions.iterator();
while(topicPartitionIterator.hasNext()){
TopicPartition topicPartition = topicPartitionIterator.next();
System.out.println("Current offset is " + kafkaConsumer.position(topicPartition) + " committed offset is ->" + kafkaConsumer.committed(topicPartition) );
if(startingOffset == -2) {
System.out.println("Leaving it alone");
}else if(startingOffset ==0){
System.out.println("Setting offset to begining");
kafkaConsumer.seekToBeginning(topicPartition);
}else if(startingOffset == -1){
System.out.println("Setting it to the end ");
kafkaConsumer.seekToEnd(topicPartition);
}else {
System.out.println("Resetting offset to " + startingOffset);
kafkaConsumer.seek(topicPartition, startingOffset);
}
}
}
});
//Start processing messages
try {
while (true) {
ConsumerRecords<String, String> records = kafkaConsumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.println(record.value());
}
if(startingOffset == -2)
kafkaConsumer.commitSync();
}
}catch(WakeupException ex){
System.out.println("Exception caught " + ex.getMessage());
}finally{
kafkaConsumer.close();
System.out.println("After closing KafkaConsumer");
}
}
public KafkaConsumer<String,String> getKafkaConsumer(){
return this.kafkaConsumer;
}
}
}

Not all kafka consumers are getting assigned to partitions

I have 10 consumers and 10 partitions.
I take the number of partitions
int partitionCount = getPartitionCount(kafkaUrl);
and I create the same number of consumers with the same group.id.
public void listen() {
try {
String kafkaUrl = getKafkaUrl();
int partitionCount = getPartitionCount(kafkaUrl);
Stream.iterate(0, i -> i + 1)
.limit(partitionCount)
.forEach(index -> executorService.execute(() ->
consumerTask.invokeKafkaConsumerTask(prepareConsumerConfig(index, kafkaUrl), INPUT_TOPIC)));
} catch (Exception exception) {
logger.error("Cannot receive event from kafka ", exception);
}
public void invokeKafkaConsumerTask(Properties properties, String topicName) {
try(KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties)) {
consumer.subscribe(Collections.singletonList(topicName));
logger.info("[KAFKA] consumer created");
invokeKafkaConsumer(consumer);
} catch (IllegalArgumentException exception) {
logger.error("Cannot create kafka consumer ", exception);
}
}
private void invokeKafkaConsumer(KafkaConsumer<String, String> consumer) {
try {
while (true) {
ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(4));
if (consumerRecords.count() > 0) {
consumeRecords(consumerRecords);
consumer.commitSync();
}
}
} catch (Exception e) {
logger.error("Error while receiving records ", e);
}
}
method getPartitionCount
return 10 partitions so it's working right
config looks like this
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaUrl);
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_CLIENT_ID);
properties.put(ConsumerConfig.CLIENT_ID_CONFIG, CONSUMER_CLIENT_ID + index);
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
properties.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "300000");
properties.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, "10000");
properties.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, String.valueOf(Integer.MAX_VALUE));
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.RoundRobinAssignor");
what I see after assigning consumers to the partition
TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CLIENT-ID
topicName 1 89391 89391 0 consumer0
topicName 3 88777 88777 0 consumer1
topicName 5 89280 89280 0 consumer2
topicName 4 88776 88776 0 consumer2
topicName 0 4670991 4670991 0 consumer0
topicName 9 23307 89343 66036 consumer4
topicName 7 89610 89610 0 consumer3
topicName 8 88167 88167 0 consumer4
topicName 2 89138 89138 0 consumer1
topicName 6 88967 88967 0 consumer3
only half of the consumers have been assigned to the partitions
why did this happen? There should be one consumer per partition acording to documentation. Am I doing something wrong? kafka version 2.1.1.
I also find few this logs ->
Setting newly assigned partitions:[empty]
[solution] interesting case I changed group.id and partition.assignment.strategy, added auto.offset.reset=earliest and it looks like it works...
Are you subscribing to a collection of topic name or java Pattern?
If you are subscribing to a Pattern , change partition.assignment.strategy to RoundRobinAssignor or StickyAssignor.

Kafka consumerRebalanceListener not working

I am using Kafka 2 and trying to commitParition inside rebalance listener and its failing with below Exception.
org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.sendOffsetCommitRequest(ConsumerCoordinator.java:798)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.commitOffsetsSync(ConsumerCoordinator.java:681)
at org.apache.kafka.clients.consumer.KafkaConsumer.commitSync(KafkaConsumer.java:1416)
at org.apache.kafka.clients.consumer.KafkaConsumer.commitSync(KafkaConsumer.java:1377)
at basics.KafkaConsumerExample$1.commitOffsets(KafkaConsumerExample.java:74)
at basics.KafkaConsumerExample$1.onPartitionsRevoked(KafkaConsumerExample.java:61)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.onJoinPrepare(ConsumerCoordinator.java:465)
at org.apache.kafka.clients.consumer.internals.AbstractCoordinator.joinGroupIfNeeded(AbstractCoordinator.java:408)
at org.apache.kafka.clients.consumer.internals.AbstractCoordinator.ensureActiveGroup(AbstractCoordinator.java:352)
at org.apache.kafka.clients.consumer.internals.AbstractCoordinator.ensureActiveGroup(AbstractCoordinator.java:337)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.poll(ConsumerCoordinator.java:333)
at org.apache.kafka.clients.consumer.KafkaConsumer.updateAssignmentMetadataIfNeeded(KafkaConsumer.java:1218)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1175)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1154)
at basics.KafkaConsumerExample.run(KafkaConsumerExample.java:97)
at basics.KafkaConsumerExample.main(KafkaConsumerExample.java:305)
Code :-
public void runConsumerWithRebalanceListener() throws Exception {
final KafkaConsumer<byte[], byte[]> consumer = createConsumer();
final TestConsumerRebalanceListener rebalanceListener = new TestConsumerRebalanceListener(consumer);
consumer.subscribe(Collections.singletonList(SIMPLE_CONSUMER_TEST_TOPIC), rebalanceListener);
while (true) {
final ConsumerRecords<byte[], byte[]> records = consumer.poll(Duration.ofMillis(100));
for (final ConsumerRecord<byte[], byte[]> record : records) {
Thread.sleep(1000);
System.out.printf("Received Message topic =%s, partition =%s, offset = %d, key = %s, value = %s\n", record.topic(), record.partition(),
record.offset(), record.key(), record.value());
rebalanceListener.addOffset(record.topic(), record.partition(), record.offset());
}
}
}
RebalanceListener Code :-
private static class TestConsumerRebalanceListener implements ConsumerRebalanceListener {
final List<Future<Boolean>> futures = new ArrayList<>();
private final KafkaConsumer<byte[], byte[]> consumer;
private final Map<TopicPartition, OffsetAndMetadata> currentOffsets = new HashMap<>();
public TestConsumerRebalanceListener(final KafkaConsumer<byte[], byte[]> consumer) {
this.consumer = consumer;
}
#Override
public void onPartitionsRevoked(final Collection<TopicPartition> partitions) {
System.out.println(" Called onPartitionsRevoked with partitions: " + partitions);
if(!futures.isEmpty())
futures.get(0).cancel(true);
consumer.commitSync(currentOffsets);
currentOffsets.clear();
}
public void addOffset(final String topic, final int partition, final long offset) {
currentOffsets.put(new TopicPartition(topic, partition), new OffsetAndMetadata(offset));
}
#Override
public void onPartitionsAssigned(final Collection<TopicPartition> partitions) {
System.out.println("Called onPartitionsAssigned with partitions: " + partitions);
}
}
Setting:-
auto.commit.offset=true
max.poll.records = 100 // Waiting for 1 sec for each msg
max.poll.interval.ms = 60000
So, rebalance will happen as 100 records processing will take more than 60secs of max poll records interval ms. So, rebalancing is happening as expected, but commitSync inside onRevoke fails.
ConsumerRebalanceListenre works for rebalance on new consumer or when consumer dies.

kafka fetch records by timestamp, consumer loop

I am using Kafka 0.10.2.1 cluster. I am using the Kafka's offsetForTimes API to seek to a particular offset and would like to breakout of the loop when i have reached the end timestamp.
My code is like this:
//package kafka.ex.test;
import java.util.*;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.OffsetAndTimestamp;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;
public class ConsumerGroup {
public static OffsetAndTimestamp fetchOffsetByTime( KafkaConsumer<Long, String> consumer , TopicPartition partition , long startTime){
Map<TopicPartition, Long> query = new HashMap<>();
query.put(
partition,
startTime);
final Map<TopicPartition, OffsetAndTimestamp> offsetResult = consumer.offsetsForTimes(query);
if( offsetResult == null || offsetResult.isEmpty() ) {
System.out.println(" No Offset to Fetch ");
System.out.println(" Offset Size "+offsetResult.size());
return null;
}
final OffsetAndTimestamp offsetTimestamp = offsetResult.get(partition);
if(offsetTimestamp == null ){
System.out.println("No Offset Found for partition : "+partition.partition());
}
return offsetTimestamp;
}
public static KafkaConsumer<Long, String> assignOffsetToConsumer( KafkaConsumer<Long, String> consumer, String topic , long startTime ){
final List<PartitionInfo> partitionInfoList = consumer.partitionsFor(topic);
System.out.println("Number of Partitions : "+partitionInfoList.size());
final List<TopicPartition> topicPartitions = new ArrayList<>();
for (PartitionInfo pInfo : partitionInfoList) {
TopicPartition partition = new TopicPartition(topic, pInfo.partition());
topicPartitions.add(partition);
}
consumer.assign(topicPartitions);
for(TopicPartition partition : topicPartitions ){
OffsetAndTimestamp offSetTs = fetchOffsetByTime(consumer, partition, startTime);
if( offSetTs == null ){
System.out.println("No Offset Found for partition : " + partition.partition());
consumer.seekToEnd(Arrays.asList(partition));
}else {
System.out.println(" Offset Found for partition : " +offSetTs.offset()+" " +partition.partition());
System.out.println("FETCH offset success"+
" Offset " + offSetTs.offset() +
" offSetTs " + offSetTs);
consumer.seek(partition, offSetTs.offset());
}
}
return consumer;
}
public static void main(String[] args) throws Exception {
String topic = args[0].toString();
String group = args[1].toString();
long start_time_Stamp = Long.parseLong( args[3].toString());
String bootstrapServers = args[2].toString();
long end_time_Stamp = Long.parseLong( args[4].toString());
Properties props = new Properties();
boolean reachedEnd = false;
props.put("bootstrap.servers", bootstrapServers);
props.put("group.id", group);
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<Long, String> consumer = new KafkaConsumer<Long, String>(props);
assignOffsetToConsumer(consumer, topic, start_time_Stamp);
System.out.println("Subscribed to topic " + topic);
int i = 0;
int arr[] = {0,0,0,0,0};
while (true) {
ConsumerRecords<Long, String> records = consumer.poll(6000);
int count= 0;
long lasttimestamp = 0;
long lastOffset = 0;
for (ConsumerRecord<Long, String> record : records) {
count++;
if(arr[record.partition()] == 0){
arr[record.partition()] =1;
}
if (record.timestamp() >= end_time_Stamp) {
reachedEnd = true;
break;
}
System.out.println("record=>"+" offset="
+record.offset()
+ " timestamp="+record.timestamp()
+ " :"+record);
System.out.println("recordcount = "+count+" bitmap"+Arrays.toString(arr));
}
if (reachedEnd) break;
if (records == null || records.isEmpty()) break; // dont wait for records
}
}
}
I face the following problems:
consumer.poll fails even for 1000 millisecond. I had to poll a few times in loop if i use 1000 millisecond. I have an extremely large value now. But having already, seeked to the relevant offsets within a partition, how to reliably set the poll timeout so that data is returned immediately?
My observations is that when data is returned it is not always from all partitions. Even when data is returned from all partitions not all records are returned. The amount of records that are in the topic is more than 1000. But the amount of records that are actually fetched and printed in loop is less(~200). Is there any issue with the current usage of my Kafka APIs?
how to reliably break out of the loop having obtained all the data between start and end timestamp and not prematurely?
Amount of records fetched per poll depends on your consumer config
You are breaking the loop when one of the partitions reaches the endtimestamp , which is not what you want . You should check that all the partitions are seeked to end before exiting poll loop
Poll call is an async call and fetch requests and responses are per node , so you may or may not get all the responses in a poll depending on the broker response time

KAFKA + FLINK 1.1.2 consumer group not working as excepted

When I tried to connect to one topic with 3 with partition and 3 FlinkKafkaConsumer09 consume from one topic and using Kafka consumer group property as below.
props.setProperty("group.id", "myGroup");
props.setProperty("auto.offset.reset", "latest");
but still 3 consumer receives all data. according to consumer group concept , data should send to only one consumer inside consumer group.
But it works good with normal Java consumer. issue with FlinkKafkaConsumer09 ?
This issue can be solved by writing on FlinkConsumer .
Steps : 1. you have to pass partitions as property to flink consumer
issue : according this you have one consumer for one partition
public class YourConsumer<T> extends FlinkKafkaConsumerBase<T>
{
public static final long DEFAULT_POLL_TIMEOUT = 100L;
private final long pollTimeout;
public FlinkKafkaConsumer09(String topic, DeserializationSchema<T> valueDeserializer, Properties props) {
this(Collections.singletonList(topic), valueDeserializer, props);
}
public FlinkKafkaConsumer09(String topic, KeyedDeserializationSchema<T> deserializer, Properties props) {
this(Collections.singletonList(topic), deserializer, props);
}
public FlinkKafkaConsumer09(List<String> topics, DeserializationSchema<T> deserializer, Properties props) {
this(topics, new KeyedDeserializationSchemaWrapper<>(deserializer), props);
}
public FlinkKafkaConsumer09(List<String> topics, KeyedDeserializationSchema<T> deserializer, Properties props) {
super(topics, deserializer);
this.properties = checkNotNull(props, "props");
setDeserializer(this.properties);
// configure the polling timeout
try {
if (properties.containsKey(KEY_POLL_TIMEOUT)) {
this.pollTimeout = Long.parseLong(properties.getProperty(KEY_POLL_TIMEOUT));
} else {
this.pollTimeout = DEFAULT_POLL_TIMEOUT;
}
}
catch (Exception e) {
throw new IllegalArgumentException("Cannot parse poll timeout for '" + KEY_POLL_TIMEOUT + '\'', e);
}
}
#Override
protected AbstractFetcher<T, ?> createFetcher(
SourceContext<T> sourceContext,
List<KafkaTopicPartition> thisSubtaskPartitions,
SerializedValue<AssignerWithPeriodicWatermarks<T>> watermarksPeriodic,
SerializedValue<AssignerWithPunctuatedWatermarks<T>> watermarksPunctuated,
StreamingRuntimeContext runtimeContext) throws Exception {
boolean useMetrics = !Boolean.valueOf(properties.getProperty(KEY_DISABLE_METRICS, "false"));
return new Kafka09Fetcher<>(sourceContext, thisSubtaskPartitions,
watermarksPeriodic, watermarksPunctuated,
runtimeContext, deserializer,
properties, pollTimeout, useMetrics);
}
#Override
protected List<KafkaTopicPartition> getKafkaPartitions(List<String> topics) {
// read the partitions that belong to the listed topics
final List<KafkaTopicPartition> partitions = new ArrayList<>();
int partition=Integer.valueOf(this.properties.get("partitions"));
try (KafkaConsumer<byte[], byte[]> consumer = new KafkaConsumer<>(this.properties)) {
for (final String topic: topics) {
// get partitions for each topic
List<PartitionInfo> partitionsForTopic = consumer.partitionsFor(topic);
// for non existing topics, the list might be null.
if (partitionsForTopic != null) {
partitions.addAll(convertToFlinkKafkaTopicPartition(partitionsForTopic),partition);
}
}
}
if (partitions.isEmpty()) {
throw new RuntimeException("Unable to retrieve any partitions for the requested topics " + topics);
}
// we now have a list of partitions which is the same for all parallel consumer instances.
LOG.info("Got {} partitions from these topics: {}", partitions.size(), topics);
if (LOG.isInfoEnabled()) {
logPartitionInfo(LOG, partitions);
}
return partitions;
}
private static List<KafkaTopicPartition> convertToFlinkKafkaTopicPartition(List<PartitionInfo> partitions,int partition) {
checkNotNull(partitions);
List<KafkaTopicPartition> ret = new ArrayList<>(partitions.size());
//for (PartitionInfo pi : partitions) {
ret.add(new KafkaTopicPartition(partitions.get(partition).topic(), partitions.get(partition).partition()));
// }
return ret;
}
private static void setDeserializer(Properties props) {
final String deSerName = ByteArrayDeserializer.class.getCanonicalName();
Object keyDeSer = props.get(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG);
Object valDeSer = props.get(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG);
if (keyDeSer != null && !keyDeSer.equals(deSerName)) {
LOG.warn("Ignoring configured key DeSerializer ({})", ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG);
}
if (valDeSer != null && !valDeSer.equals(deSerName)) {
LOG.warn("Ignoring configured value DeSerializer ({})", ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG);
}
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, deSerName);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, deSerName);
}
}