I am trying to generate a non-uniform 1D mesh with constant stretching by a value r between 0 and 1.
This is the code I've tried but I can't seem to get this to work. The final value is never 1 and I'm not sure if this is because the number of indices needs to change so that the total distance remains the same. I'm new to this, I've never had to make any kind of unstructured mesh before so any help would be really great!
n = 20; % number of indices
h = 1/(n-1); % unstretched grid spacing
r = .9; % stretching factor
x2 = zeros(n,1);
for i=2:n
x2(i) = x2(i-1)+r^(i-2)*h;
end
If you want to place n nodes in geometric progression between 0 and 1 with ratio r, then the nodes will be placed at
x(1) = 0
x(2) = h
x(3) = h + r*h
x(4) = h + r*h + r^2*h
...
x(n) = h*(1 + r + r^3 + ... + r^(n-2)) = 1
where we can determine h as
h = 1/sum(r^j, j = 0..(n-2)) = (r - 1)/(r^(n-1) - 1)
We can then place all n nodes:
h = (r - 1)/(r^(n-1) - 1); % 1st grid spacing
x = [0, h*cumsum(r.^(0:(n-2)))];
Solution for n = 5 and r = 0.9:
x =
0.00000 0.29078 0.55249 0.78802 1.00000
Related
This is my code to make an integration in the rectangular method in the matlab
f=#(x) (x^(1/2))
a = 1
b = 10
% step size
h = 0.25
n = 0 % the counter
xn= a + (n * h)
%%
%Rectangle Method:
s=0
for i =0:n-1
s = s + f(xn)
end
Rectangle = h * s
the answer should be around 20, but i'm getting 29.5
what's the problem?
Two errors:
1) xn is not updated.
2) number of points n is set to zero.
There are other minor issues which I did not fix, e.g. right and left boundary points should both contribute to the sum with weight 1/2.
Quick fix:
f=#(x) (x^(1/2));
a = 1;
b = 10 ;
% step size
h = 0.25;
n = (b-a)/h; % the counter
%%
%Rectangle Method:
s=0;
for i =0:n-1
xn= a + (i * h);
s = s + f(xn);
end
Rectangle = h * s;
I have a mathematical function E which I want to minimize. I get from solving this 16 possible solutions x1, x2, ..., x16, only two of which that actually minimize the function (located at a minimum). Using a for loop, I can then plug all of these 16 solutions into the original function, and select the solutions I need by applying some criteria via if statements (plotting E vs E(x) if x is real and positive, if first derivative of E is below a threshold, and if the second derivative of E is positive).
That way I only plot the solutions I'm interested in. However, I would now like to extract the relevant x that I plot. Here's a sample MATLAB code that plots the way I just described. I want to extract the thetas that I actually end up plotting. How to do that?
format long
theta_s = 0.77944100;
sigma = 0.50659500;
Delta = 0.52687700;
%% Defining the coefficients of the 4th degree polynomial
alpha = cos(2*theta_s);
beta = sin(2*theta_s);
gamma = 2*Delta^2/sigma^2;
a = -gamma^2 - beta^2*Delta^2 - alpha^2*Delta^2 + 2*alpha*Delta*gamma;
b = 2*alpha*gamma - 2*Delta*gamma - 2*alpha^2*Delta + 2*alpha*Delta^2 -...
2*beta^2*Delta;
c = 2*gamma^2 - 2*alpha*Delta*gamma - 2*gamma - alpha^2 + 4*alpha*Delta +...
beta^2*Delta^2 - beta^2 - Delta^2;
d = -2*alpha*gamma + 2*Delta*gamma + 2*alpha + 2*beta^2*Delta - 2*Delta;
e = beta^2 - gamma^2 + 2*gamma - 1;
%% Solve the polynomial numerically.
P = [a b c d e];
R = roots(P);
%% Solve r = cos(2x) for x: x = n*pi +- 1/2 * acos(r). Using n = 0 and 1.
theta = [1/2.*acos(R) -1/2.*acos(R) pi+1/2.*acos(R) pi-1/2.*acos(R)];
figure;
hold on;
x = 0:1/1000:2*pi;
y_1 = sigma*cos(x - theta_s) + sqrt(1 + Delta*cos(2*x));
y_2 = sigma*cos(x - theta_s) - sqrt(1 + Delta*cos(2*x));
plot(x,y_1,'black');
plot(x,y_2,'black');
grid on;
%% Plot theta if real, if positive, if 1st derivative is ~zero, and if 2nd derivative is positive
for j=1:numel(theta);
A = isreal(theta(j));
x_j = theta(j);
y_j = sigma*cos(x_j - theta_s) + sqrt(1 + Delta*cos(2*x_j));
FirstDer = sigma* sin(theta(j) - theta_s) + Delta*sin(2*theta(j))/...
sqrt(1 + Delta*cos(2*theta(j)));
SecDer = -sigma*cos(theta(j)-theta_s) - 2*Delta*cos(2*theta(j))/...
(1 + Delta*cos(2*theta(j)))^(1/2) - Delta^2 * (sin(2*theta(j)))^2/...
(1 + Delta*cos(2*theta(j)))^(3/2);
if A == 1 && x_j>=0 && FirstDer < 1E-7 && SecDer > 0
plot(x_j,y_j,['o','blue'])
end
end
After you finish all plotting, get the axes handle:
ax = gca;
then write:
X = get(ax.Children,{'XData'});
And X will be cell array of all the x-axis values from all lines in the graph. One cell for each line.
For the code above:
X =
[1.961054062875753]
[4.514533853417446]
[1x6284 double]
[1x6284 double]
(First, the code all worked. Thanks for the effort there.)
There are options here. A are couple below
Record the values as you generate them
Within the "success" if statement, simply record the values. See edits to your code below.
This would always be the preferred option for me, it just seems much more efficient.
xyResults = zeros(0,2); %%% INITIALIZE HERE
for j=1:numel(theta);
A = isreal(theta(j));
x_j = theta(j);
y_j = sigma*cos(x_j - theta_s) + sqrt(1 + Delta*cos(2*x_j));
FirstDer = sigma* sin(theta(j) - theta_s) + Delta*sin(2*theta(j))/...
sqrt(1 + Delta*cos(2*theta(j)));
SecDer = -sigma*cos(theta(j)-theta_s) - 2*Delta*cos(2*theta(j))/...
(1 + Delta*cos(2*theta(j)))^(1/2) - Delta^2 * (sin(2*theta(j)))^2/...
(1 + Delta*cos(2*theta(j)))^(3/2);
if A == 1 && x_j>=0 && FirstDer < 1E-7 && SecDer > 0
xyResults(end+1,:) = [x_j y_j]; %%%% RECORD HERE
plot(x_j,y_j,['o','blue'])
end
end
Get the result from the graphics objects
You can get the data you want from the actual graphics objects. This would be the option if there was just no way to capture the data as it was generated.
%First find the objects witht the data you want
% (Ideally you could record handles to the lines as you generated
% them above. But then you could also simply record the answer, so
% let's assume that direct record is not possible.)
% (BTW, 'findobj' is an underused, powerful function.)
h = findobj(0,'Marker','o','Color','b','type','line')
%Then get the `xdata` filed from each
capturedXdata = get(h,'XData');
capturedXdata =
2×1 cell array
[1.96105406287575]
[4.51453385341745]
%Then get the `ydata` filed from each
capturedYdata = get(h,'YData');
capturedYdata =
2×1 cell array
[1.96105406287575]
[4.51453385341745]
I've had problems with my code as I've tried to make an integral compute, but it will not for the power, P2.
I've tried using anonymous function handles to use the integral() function on MATLAB as well as just using int(), but it will still not compute. Are the values too small for MATLAB to integrate or am I just missing something small?
Any help or advice would be appreciated to push me in the right direction. Thanks!
The problem in the code is in the bottom of the section labelled "Power Calculations". My integral also gets quite messy if that makes a difference.
%%%%%%%%%%% Parameters %%%%%%%%%%%%
n0 = 1; %air
n1 = 1.4; %layer 1
n2 = 2.62; %layer 2
n3 = 3.5; %silicon
L0 = 650*10^(-9); %centre wavelength
L1 = 200*10^(-9): 10*10^(-9): 2200*10^(-9); %lambda from 200nm to 2200nm
x = ((pi./2).*(L0./L1)); %layer phase thickness
r01 = ((n0 - n1)./(n0 + n1)); %reflection coefficient 01
r12 = ((n1 - n2)./(n1 + n2)); %reflection coefficient 12
r23 = ((n2 - n3)./(n2 + n3)); %reflection coefficient 23
t01 = ((2.*n0)./(n0 + n1)); %transmission coefficient 01
t12 = ((2.*n1)./(n1 + n2)); %transmission coefficient 12
t23 = ((2.*n2)./(n2 + n3)); %transmission coefficient 23
Q1 = [1 r01; r01 1]; %Matrix Q1
Q2 = [1 r12; r12 1]; %Matrix Q2
Q3 = [1 r23; r23 1]; %Matrix Q3
%%%%%%%%%%%% Graph of L vs R %%%%%%%%%%%
R = zeros(size(x));
for i = 1:length(x)
P = [exp(j.*x(i)) 0; 0 exp(-j.*x(i))]; %General Matrix P
T = ((1./(t01.*t12.*t23)).*(Q1*P*Q2*P*Q3)); %Transmission
T11 = T(1,1); %T11 value
T21 = T(2,1); %T21 value
R(i) = ((abs(T21./T11))^2).*100; %Percent reflectivity
end
plot(L1,R)
title('Percent Reflectance vs. wavelength for 2 Layers')
xlabel('Wavelength (m)')
ylabel('Reflectance (%)')
%%%%%%%%%%% Power Calculation %%%%%%%%%%
syms L; %General lamda
y = ((pi./2).*(L0./L)); %Layer phase thickness with variable Lamda
P1 = [exp(j.*y) 0; 0 exp(-j.*y)]; %Matrix P with variable Lambda
T1 = ((1./(t01.*t12.*t23)).*(Q1*P1*Q2*P1*Q3)); %Transmittivity matrix T1
I = ((6.16^(15))./((L.^(5)).*exp(2484./L) - 1)); %Blackbody Irradiance
Tf11 = T1(1,1); %New T11 section of matrix with variable Lambda
Tf2 = (((abs(1./Tf11))^2).*(n3./n0)); %final transmittivity
P1 = Tf2.*I; %Power before integration
L_initial = 200*10^(-9); %Initial wavelength
L_final = 2200*10^(-9); %Final wavelength
P2 = int(P1, L, L_initial, L_final) %Power production
I've refactored your code
to make it easier to read
to improve code reuse
to improve performance
to make it easier to understand
Why do you use so many unnecessary parentheses?!
Anyway, there's a few problems I saw in your code.
You used i as a loop variable, and j as the imaginary unit. It was OK for this one instance, but just barely so. In the future it's better to use 1i or 1j for the imaginary unit, and/or m or ii or something other than i or j as the loop index variable. You're helping yourself and your colleagues; it's just less confusing that way.
Towards the end, you used the variable name P1 twice in a row, and in two different ways. Although it works here, it's confusing! Took me a while to unravel why a matrix-producing function was producing scalars instead...
But by far the biggest problem in your code is the numerical problems with the blackbody irradiance computation. The term
L⁵ · exp(2484/L) - 1
for λ₀ = 200 · 10⁻⁹ m will require computing the quantity
exp(1.242 · 10¹⁰)
which, needless to say, is rather difficult for a computer :) Actually, the problem with your computation is two-fold. First, the exponentiation is definitely out of range of 64 bit IEEE-754 double precision, and will therefore result in ∞. Second, the parentheses are wrong; Planck's law should read
C/L⁵ · 1/(exp(D) - 1)
with C and D the constants (involving Planck's constant, speed of light, and Boltzmann constant), which you've presumably precomputed (I didn't check the values. I do know choice of units can mess these up, so better check).
So, aside from the silly parentheses error, I suspect the main problem is that you simply forgot to rescale λ to nm. Changing everything in the blackbody equation to nm and correcting those parentheses gives the code
I = 6.16^(15) / ( (L*1e+9)^5 * (exp(2484/(L*1e+9)) - 1) );
With this, I got a finite value for the integral of
P2 = 1.052916498836486e-010
But, again, you'd better double-check everything.
Note that I used quadgk(), because it's one of the better ones available on R2010a (which I'm stuck with), but you can just as easily replace this with integral() available on anything newer than R2012a.
Here's the code I ended up with:
function pwr = my_fcn()
% Parameters
n0 = 1; % air
n1 = 1.4; % layer 1
n2 = 2.62; % layer 2
n3 = 3.5; % silicon
L0 = 650e-9; % centre wavelength
% Reflection coefficients
r01 = (n0 - n1)/(n0 + n1);
r12 = (n1 - n2)/(n1 + n2);
r23 = (n2 - n3)/(n2 + n3);
% Transmission coefficients
t01 = (2*n0) / (n0 + n1);
t12 = (2*n1) / (n1 + n2);
t23 = (2*n2) / (n2 + n3);
% Quality factors
Q1 = [1 r01; r01 1];
Q2 = [1 r12; r12 1];
Q3 = [1 r23; r23 1];
% Initial & Final wavelengths
L_initial = 200e-9;
L_final = 2200e-9;
% plot reflectivity for selected lambda range
plot_reflectivity(L_initial, L_final, 1000);
% Compute power production
pwr = quadgk(#power_production, L_initial, L_final);
% Helper functions
% ========================================
% Graph of lambda vs reflectivity
function plot_reflectivity(L_initial, L_final, N)
L = linspace(L_initial, L_final, N);
R = zeros(size(L));
for ii = 1:numel(L)
% Transmission
T = transmittivity(L(ii));
% Percent reflectivity
R(ii) = 100 * abs(T(2,1)/T(1,1))^2 ;
end
plot(L, R)
title('Percent Reflectance vs. wavelength for 2 Layers')
xlabel('Wavelength (m)')
ylabel('Reflectance (%)')
end
% Compute transmittivity matrix for a single wavelength
function T = transmittivity(L)
% Layer phase thickness with variable Lamda
y = pi/2 * L0/L;
% Matrix P with variable Lambda
P1 = [exp(+1j*y) 0
0 exp(-1j*y)];
% Transmittivity matrix T1
T = 1/(t01*t12*t23) * Q1*P1*Q2*P1*Q3;
end
% Power for a specific wavelength. Note that this function
% accepts vector-valued wavelengths; needed for quadgk()
function pwr = power_production(L)
pwr = zeros(size(L));
for ii = 1:numel(L)
% Transmittivity matrix
T1 = transmittivity(L(ii));
% Blackbody Irradiance
I = 6.16^(15) / ( (L(ii)*1e+9)^5 * (exp(2484/(L(ii)*1e+9)) - 1) );
% final transmittivity
Tf2 = abs(1/T1(1))^2 * n3/n0;
% Power before integration
pwr(ii) = Tf2 * I;
end
end
end
I want to speed up my code. I always use vectorization. But in this code I have no idea how to avoid the for-loop. I would really appreciate a hint how to proceed.
thank u so much for your time.
close all
clear
clc
% generating sample data
x = linspace(10,130,33);
y = linspace(20,100,22);
[xx, yy] = ndgrid(x,y);
k = 2*pi/50;
s = [sin(k*xx+k*yy)];
% generating query points
xi = 10:5:130;
yi = 20:5:100;
[xxi, yyi] = ndgrid(xi,yi);
P = [xxi(:), yyi(:)];
% interpolation algorithm
dx = x(2) - x(1);
dy = y(2) - y(1);
x_ = [x(1)-dx x x(end)+dx x(end)+2*dx];
y_ = [y(1)-dy y y(end)+dy y(end)+2*dy];
s_ = [s(1) s(1,:) s(1,end) s(1,end)
s(:,1) s s(:,end) s(:,end)
s(end,1) s(end,:) s(end,end) s(end,end)
s(end,1) s(end,:) s(end,end) s(end,end)];
si = P(:,1)*0;
M = 1/6*[-1 3 -3 1
3 -6 3 0
-3 0 3 0
1 4 1 0];
tic
for nn = 1:numel(P(:,1))
u = mod(P(nn,1)- x_(1), dx)/dx;
jj = floor((P(nn,1) - x_(1))/dx) + 1;
v = mod(P(nn,2)- y_(1), dy)/dy;
ii = floor((P(nn,2) - y_(1))/dy) + 1;
D = [s_(jj-1,ii-1) s_(jj-1,ii) s_(jj-1,ii+1) s_(jj-1,ii+2)
s_(jj,ii-1) s_(jj,ii) s_(jj,ii+1) s_(jj,ii+2)
s_(jj+1,ii-1) s_(jj+1,ii) s_(jj+1,ii+1) s_(jj+1,ii+2)
s_(jj+2,ii-1) s_(jj+2,ii) s_(jj+2,ii+1) s_(jj+2,ii+2)];
U = [u.^3 u.^2 u 1];
V = [v.^3 v.^2 v 1];
si(nn) = U*M*D*M'*V';
end
toc
scatter3(P(:,1), P(:,2), si)
hold on
mesh(xx,yy,s)
This is the full example and is a cubic B-spline surface interpolation algorithm in 2D space.
I have a histogram
hist(A, 801)
that currently resembles a normal curve but with max value at y = 1500, and mean at x = 0.5. I want to normalize it, so I tried
h = hist(A, 801)
h = h ./ sum(h)
bar(h)
now I get a normal curve with max at y = .03, but a mean at x = 450.
how do I decrease the frequency so the sum is 1, while retaining the same x range?
A is derived from
A = walk(50000, 800, .05, 2, .25, 0)
where
function [X_new] = walk(N_sim, N, mu, T, sigma, X_init)
delt = T/N;
up = sigma*sqrt(delt);
down = -sigma*sqrt(delt);
p = 1./2.*(1.+mu/sigma*sqrt(delt));
X_new = zeros(N_sim,1);
X_new(1:N_sim,1) = X_init;
ptest = zeros(N_sim,1);
for i = 1:N
ptest(:,1) = rand(N_sim,1);
ptest(:,1) = (ptest(:,1) <= p);
X_new(:,1) = X_new(:,1) + ptest(:,1)*up + (1.-ptest(:,1))*down;
end
The sum is 1 with your code as it stands.
You may want integral equal to 1 (so that you can compare with the theoretical pdf). In that case:
[h, c] = hist(A, 801); %// c contains bin centers. They are equally spaced
h = h / sum(h) / (c(2)-c(1)); %// normalize to area 1
trapz(c,h) %// compute integral. Should be approximately 1