Scala - not a case class nor does it have method .unapply - scala

I am quite new to Scala and got a few unresolved problems with the following code:
object exprs{
println("Welcome to the Scala worksheet")
def show(e: Expr): String = e match {
case Number(x) => x.toString
case Sum(l, r) => show(l) + " + " + show(r)
}
show(Sum(Number(1), Number(44)))
}
trait Expr {
def isNumber: Boolean
def isSum: Boolean
def numValue: Int
def leftOp: Expr
def rightOp: Expr
def eval: Int = this match {
case Number(n) => n
case Sum(e1, e2) => e1.eval + e2.eval
}
}
class Number(n: Int) extends Expr {
override def isNumber: Boolean = true
override def isSum: Boolean = false
override def numValue: Int = n
override def leftOp: Expr = throw new Error("Number.leftOp")
override def rightOp: Expr = throw new Error("Number.rightOp")
}
class Sum(e1: Expr, e2: Expr) extends Expr {
override def isNumber: Boolean = false
override def isSum: Boolean = true
override def numValue: Int = e1.eval + e2.eval
override def leftOp: Expr = e1
override def rightOp: Expr = e2
}
I get the following errors:
Error: object Number is not a case class, nor does it have an unapply/unapplySeq member
Error: not found: value Sum
How to resolve them? Thanks in advance

In Scala case class are like class with extra goodies + some other properties.
For a normal class,
class A(i: Int, s: String)
You can not create its instance like this,
val a = A(5, "five") // this will not work
You will have to use new to create new instance.
val a = new A(5, "five")
Now lets say we have case class,
case class B(i: Int, s: String)
We can create a new instance of B like this,
val b = B(5, "five")
The reason this works with case class is because case class have an auto-created companion objects with them, which provides several utilities including an apply and unapply method.
So, this usage val b = B(5, "five") is actually val b = B.apply(5, "five"). And here B is not the class B but the companion object B which is actually provieds apply method.
Similarly Scala pattern matching uses the unapply (unapplySeq for SeqLike patterns) methods provided by companion object. And hence normal class instances do not work with pattern matching.
Lets say you wanted to defined a class and not a case class for some specific reason but still want to use them with pattern-matching etc, you can provide its companion object with the required methods by yourselves.
class C(val i: Int, val s: String) {
}
object C {
def apply(i: Int, s: String) = new C(i, s)
def unapply(c: C) = Some((c.i, c.s))
}
// now you can use any of the following to create instances,
val c1 = new C(5, "five")
val c2 = C.apply(5, "five")
val c3 = C(5, "five")
// you can also use pattern matching,
c1 match {
case C(i, s) => println(s"C with i = $i and s = $s")
}
c2 match {
case C(i, s) => println(s"C with i = $i and s = $s")
}
Also, as you are new to learning Scala you should read http://danielwestheide.com/scala/neophytes.html which is probably the best resource for any Scala beginner.

Related

Scala Method on Generic Data Type

I am trying to create a generic class that only accepts java.math.BigDecimal or Long. Here is the code:
class myClass[T]()
{
def display( x : T) = {
println(x.doubleValue())
}
}
val input = new java.math.BigDecimal(100)
// val input = 100L
val x = new myClass[java.math.BigDecimal]()
x.display(input)
Clearly I will have this error: ScalaFiddle.scala:22: error: value doubleValue is not a member of type parameter T.
I tried playing with implicit conversion, view bound, and context bound for hours. No result so far. Is there any way I can force Scala to believe me that T has method .doubleValue()? (java.big.Decimal and Long both has .doubleValue() method, but they don't share same super-class)
Try structural type bound
class myClass[T <: {def doubleValue(): Double}]
or type class
trait HasDoubleValue[T] {
def doubleValue(t: T): Double
}
object HasDoubleValue {
implicit val long: HasDoubleValue[Long] = t => t.doubleValue
implicit val bigDecimal: HasDoubleValue[BigDecimal] = t => t.doubleValue
}
implicit class DoubleValueOps[T: HasDoubleValue](x: T) {
def doubleValue(): Double = implicitly[HasDoubleValue[T]].doubleValue(x)
}
class myClass[T: HasDoubleValue]
In Dotty (Scala 3) we might use union types, for example,
class myClass[T <: (Long | java.math.BigDecimal)]() {
def display(x: T) =
println(
x match {
case t: Long => t.doubleValue
case t: java.math.BigDecimal => t.doubleValue
}
)
}
new myClass().display(new java.math.BigDecimal(100)) // OK
new myClass().display(100L) // OK
new myClass().display("100") // Error
scala> class C private (n: Number) {
| def this(i: Long) = this(i: Number)
| def this(b: BigDecimal) = this(b: Number)
| def d = n.doubleValue
| }
defined class C
scala> new C(42L).d
res0: Double = 42.0
scala> new C(BigDecimal("123456789")).d
res1: Double = 1.23456789E8
or with a type parameter
scala> class C[A <: Number] private (n: A) { def d = n.doubleValue ; def a = n } ; object C {
| def apply(i: Long) = new C(i: Number) ; def apply(b: BigDecimal) = new C(b) }
defined class C
defined object C

Whats the best way to restore the default implementation of a case class toString

Say I do the following:
trait A {
val i: Int
override def toString = s"A($i)"
}
case class B(i: Int, j: Int) extends A
println(B(2, 3))
This will give me the output:
A(2)
Is there a way I can make B.toString revert to the default toString for a case class without me having to explicitly write:
override def toString = s"B($i,$j)"
It used to be
override def toString = scala.runtime.ScalaRunTime._toString(this)
but that object was removed in 2.12 EDIT: it was only removed from ScalaDoc, but still exists.
To avoid relying on ScalaRunTime._toString, you can define it yourself:
def _toString(x: Product): String =
x.productIterator.mkString(x.productPrefix + "(", ",", ")")
Perhaps
trait A {
val i: Int
override def toString = this match {
case p: Product => scala.runtime.ScalaRunTime._toString(p)
case _ => s"A($i)"
}
}
case class B(i: Int, j: Int) extends A
class Foo extends A {
override val i = 42
}
B(2, 3)
new Foo
which outputs
res0: B = B(2,3)
res1: Foo = A(42)

How to write this recursive groupBy function in Scala

Recently I have come across a very useful groupBy function that Groovy has made available on Iterable:
public static Map groupBy(Iterable self, List<Closure> closures)
Which you can use to perform recursive groupBy on Lists and even Maps see example by mrhaki here
I would like to write a function that does the same in Scala. But having just started my Scala journey, I am kind of lost on how I should going about defining and implementing this method. Especially the generics side of the functions and return type on this method's signature are way beyond my level.
I would need more experienced Scala developers to help me out here.
Is this following signature totally wrong or am I in the ball park?
def groupBy[A, K[_]](src: List[A], fs: Seq[(A) ⇒ K[_]]): Map[K[_], List[A]]
Also, how would I implement the recursion with the correct types?
This is simple multigroup implementation:
implicit class GroupOps[A](coll: Seq[A]) {
def groupByKeys[B](fs: (A => B)*): Map[Seq[B], Seq[A]] =
coll.groupBy(elem => fs map (_(elem)))
}
val a = 1 to 20
a.groupByKeys(_ % 3, _ % 2) foreach println
If you really need some recursive type you'll need a wrapper:
sealed trait RecMap[K, V]
case class MapUnit[K, V](elem: V) extends RecMap[K, V] {
override def toString = elem.toString()
}
case class MapLayer[K, V](map: Map[K, RecMap[K, V]]) extends RecMap[K, V] {
override def toString = map.toString()
}
out definition changes to:
implicit class GroupOps[A](coll: Seq[A]) {
def groupByKeys[B](fs: (A => B)*): Map[Seq[B], Seq[A]] =
coll.groupBy(elem => fs map (_(elem)))
def groupRecursive[B](fs: (A => B)*): RecMap[B, Seq[A]] = fs match {
case Seq() => MapUnit(coll)
case f +: fs => MapLayer(coll groupBy f mapValues {_.groupRecursive(fs: _*)})
}
}
and a.groupRecursive(_ % 3, _ % 2) yield something more relevant to question
And finally i rebuild domain definition from referred article:
case class User(name: String, city: String, birthDate: Date) {
override def toString = name
}
implicit val date = new SimpleDateFormat("yyyy-MM-dd").parse(_: String)
val month = new SimpleDateFormat("MMM").format (_:Date)
val users = List(
User(name = "mrhaki", city = "Tilburg" , birthDate = "1973-9-7"),
User(name = "bob" , city = "New York" , birthDate = "1963-3-30"),
User(name = "britt" , city = "Amsterdam", birthDate = "1980-5-12"),
User(name = "kim" , city = "Amsterdam", birthDate = "1983-3-30"),
User(name = "liam" , city = "Tilburg" , birthDate = "2009-3-6")
)
now we can write
users.groupRecursive(_.city, u => month(u.birthDate))
and get
Map(Tilburg -> Map(Mar -> List(liam), Sep -> List(mrhaki)), New York
-> Map(Mar -> List(bob)), Amsterdam -> Map(Mar -> List(kim), May -> List(britt)))
I decided add another answer, due to fully different approach.
You could, actually get non-wrapped properly typed maps with huge workarounds. I not very good at this, so it by the chance could be simplified.
Trick - is to create Sequence of typed functions, which is lately producing multi-level map using type classes and type path approach.
So here is the solution
sealed trait KeySeq[-V] {
type values
}
case class KeyNil[V]() extends KeySeq[V] {
type values = Seq[V]
}
case class KeyCons[K, V, Next <: KeySeq[V]](f: V => K, next: Next)
(implicit ev: RecGroup[V, Next]) extends KeySeq[V] {
type values = Map[K, Next#values]
def #:[K1](f: V => K1) = new KeyCons[K1, V, KeyCons[K, V, Next]](f, this)
}
trait RecGroup[V, KS <: KeySeq[V]] {
def group(seq: Seq[V], ks: KS): KS#values
}
implicit def groupNil[V]: RecGroup[V, KeyNil[V]] = new RecGroup[V, KeyNil[V]] {
def group(seq: Seq[V], ks: KeyNil[V]) = seq
}
implicit def groupCons[K, V, Next <: KeySeq[V]](implicit ev: RecGroup[V, Next]): RecGroup[V, KeyCons[K, V, Next]] =
new RecGroup[V, KeyCons[K, V, Next]] {
def group(seq: Seq[V], ks: KeyCons[K, V, Next]) = seq.groupBy(ks.f) mapValues (_ groupRecursive ks.next)
}
implicit def funcAsKey[K, V](f: V => K): KeyCons[K, V, KeyNil[V]] =
new KeyCons[K, V, KeyNil[V]](f, KeyNil[V]())
implicit class GroupOps[V](coll: Seq[V]) {
def groupRecursive[KS <: KeySeq[V]](ks: KS)(implicit g: RecGroup[V, KS]) =
g.group(coll, ks)
}
key functions are composed via #: right-associative operator
so if we define
def mod(m:Int) = (x:Int) => x % m
def even(x:Int) = x % 2 == 0
then
1 to 30 groupRecursive (even _ #: mod(3) #: mod(5) )
would yield proper Map[Boolean,Map[Int,Map[Int,Int]]] !!!
and if from previous question we would like to
users.groupRecursive(((u:User)=> u.city(0)) #: ((u:User) => month(u.birthDate)))
We are building Map[Char,Map[String,User]] !

scala's spire framework : I am unable to operate on a group

I try to use spire, a math framework, but I have an error message:
import spire.algebra._
import spire.implicits._
trait AbGroup[A] extends Group[A]
final class Rationnel_Quadratique(val n1: Int = 2)(val coef: (Int, Int)) {
override def toString = {
coef match {
case (c, i) =>
s"$c + $i√$n"
}
}
def a() = coef._1
def b() = coef._2
def n() = n1
}
object Rationnel_Quadratique {
def apply(coef: (Int, Int),n: Int = 2)= {
new Rationnel_Quadratique(n)(coef)
}
}
object AbGroup {
implicit object RQAbGroup extends AbGroup[Rationnel_Quadratique] {
def +(a: Rationnel_Quadratique, b: Rationnel_Quadratique): Rationnel_Quadratique = Rationnel_Quadratique(coef=(a.a() + b.a(), a.b() + b.b()))
def inverse(a: Rationnel_Quadratique): Rationnel_Quadratique = Rationnel_Quadratique((-a.a(), -a.b()))
def id: Rationnel_Quadratique = Rationnel_Quadratique((0, 0))
}
}
object euler66_2 extends App {
val c = Rationnel_Quadratique((1, 2))
val d = Rationnel_Quadratique((3, 4))
val e = c + d
println(e)
}
the program is expected to add 1+2√2 and 3+4√2, but instead I have this error:
could not find implicit value for evidence parameter of type spire.algebra.AdditiveSemigroup[Rationnel_Quadratique]
val e = c + d
^
I think there is something essential I have missed (usage of implicits?)
It looks like you are not using Spire correctly.
Spire already has an AbGroup type, so you should be using that instead of redefining your own. Here's an example using a simple type I created called X.
import spire.implicits._
import spire.algebra._
case class X(n: BigInt)
object X {
implicit object XAbGroup extends AbGroup[X] {
def id: X = X(BigInt(0))
def op(lhs: X, rhs: X): X = X(lhs.n + rhs.n)
def inverse(lhs: X): X = X(-lhs.n)
}
}
def test(a: X, b: X): X = a |+| b
Note that with groups (as well as semigroups and monoids) you'd use |+| rather than +. To get plus, you'll want to define something with an AdditiveSemigroup (e.g. Semiring, or Ring, or Field or something).
You'll also use .inverse and |-| instead of unary and binary - if that makes sense.
Looking at your code, I am also not sure your actual number type is right. What will happen if I want to add two numbers with different values for n?
Anyway, hope this clears things up for you a bit.
EDIT: Since it seems like you're also getting hung up on Scala syntax, let me try to sketch a few designs that might work. First, there's always a more general solution:
import spire.implicits._
import spire.algebra._
import spire.math._
case class RQ(m: Map[Natural, SafeLong]) {
override def toString: String = m.map {
case (k, v) => if (k == 1) s"$v" else s"$v√$k" }.mkString(" + ")
}
object RQ {
implicit def abgroup[R <: Radical](implicit r: R): AbGroup[RQ] =
new AbGroup[RQ] {
def id: RQ = RQ(Map.empty)
def op(lhs: RQ, rhs: RQ): RQ = RQ(lhs.m + rhs.m)
def inverse(lhs: RQ): RQ = RQ(-lhs.m)
}
}
object Test {
def main(args: Array[String]) {
implicit val radical = _2
val x = RQ(Map(Natural(1) -> 1, Natural(2) -> 2))
val y = RQ(Map(Natural(1) -> 3, Natural(2) -> 4))
println(x)
println(y)
println(x |+| y)
}
}
This allows you to add different roots together without problem, at the cost of some indirection. You could also stick more closely to your design with something like this:
import spire.implicits._
import spire.algebra._
abstract class Radical(val n: Int) { override def toString: String = n.toString }
case object _2 extends Radical(2)
case object _3 extends Radical(3)
case class RQ[R <: Radical](a: Int, b: Int)(implicit r: R) {
override def toString: String = s"$a + $b√$r"
}
object RQ {
implicit def abgroup[R <: Radical](implicit r: R): AbGroup[RQ[R]] =
new AbGroup[RQ[R]] {
def id: RQ[R] = RQ[R](0, 0)
def op(lhs: RQ[R], rhs: RQ[R]): RQ[R] = RQ[R](lhs.a + rhs.a, lhs.b + rhs.b)
def inverse(lhs: RQ[R]): RQ[R] = RQ[R](-lhs.a, -lhs.b)
}
}
object Test {
def main(args: Array[String]) {
implicit val radical = _2
val x = RQ[_2.type](1, 2)
val y = RQ[_2.type](3, 4)
println(x)
println(y)
println(x |+| y)
}
}
This approach creates a fake type to represent whatever radical you are using (e.g. √2) and parameterizes QR on that type. This way you can be sure that no one will try to do additions that are invalid.
Hopefully one of these approaches will work for you.

How to use extractor in polymorphic unapply?

I don't really get this little thingy. I have an abstract class Box
with several sub-classes for different types. For example
abstract class Box
class StringBox(val sValue : String) extends Box
The apply method in the companion object for Box is simple:
object Box{
def apply(s: String) = new StringBox(s)
def apply(b: Boolean) = new BooleanBox(b)
def apply(d: Double) = new DoubleBox(d)
}
so I can write
val sb = Box("StringBox)
Okay, writing unapply makes some trouble. My first idea was to use pattern matching on the type, like this this:
def unapply(b: Box) = b match {
case sb: StringBox => Some(sb.sValue)
case bb: BooleanBox => Some(bb.bValue)
case db: DoubleBox => Some(db.dValue)
case _ => None
}
Which simply doesn't work because of type erasures.
Second attempt was a generic Box[T] with type T and an abstract type member re-defined
in each sub classes. For instance:
abstract class Box[T] {def value : T}
class StringBox(val sValue : String) extends Box[String] {
override def value : String = sValue
}
Consequently, I can re write my unapply as:
def unapply[T](b: Box[T]) = b match {
case sb: Box[String] => Some(sb.value)
case bb: Box[Boolean] => Some(bb.value)
case db: Box[Double] => Some(db.value)
case _ => None
Unfortunately, this doesn't work either. So I guess the explicit type reference
in Box[String] gets erased as well so I need to use a type manifest instead.
Maybe something like:
def unapply[T](b: Box[_])(implicit target: Manifest[T]): Option[T] = {
if(b.value == target) Some(b.value.asInstanceOf[T])
else None
}
This code compiles (2.10) but still does not the desired implicit conversion.
Why?
Simple question, is there a way to do value extraction without using reflection
or a manifest?
What really boggles me is the question if there is a simple(r) way to combine
polymorphism and pattern matching? If not, are there other ways in Scala to
accomplish a similar effect?
Any idea or suggestions?
Thank you very much.
Prolly you can try this.. :)
abstract class Box[T](val v: T)
object Box {
def apply(s: String) = new StringBox(s)
def apply(b: Boolean) = new BooleanBox(b)
def apply(d: Double) = new DoubleBox(d)
}
class StringBox(sValue: String) extends Box(sValue)
object StringBox {
def unapply(b: StringBox) = Some(b.v)
}
class BooleanBox(sValue: Boolean) extends Box(sValue)
object BooleanBox {
def unapply(b: BooleanBox) = Some(b.v)
}
class DoubleBox(sValue: Double) extends Box(sValue)
object DoubleBox {
def unapply(b: DoubleBox) = Some(b.v)
}
You can use it as --
def useCase[T](box: Box[T]) = box match {
case StringBox("StringBoxxx") => "I found the StringBox!"
case StringBox(s) => "Some other StringBox"
case BooleanBox(b) => {
if (b) "Omg! its true BooleanBox !"
else "its false BooleanBox :("
}
case DoubleBox(x) => {
if (x > 3.14) "DoubleBox greater than pie !"
else if (x == 3.14) "DoubleBox with a pie !"
else "DoubleBox less than a pie !"
}
case _ => "What is it yaa ?"
}
useCase(Box("StringBoxxx")) //> res0: String = I found the StringBox!
useCase(Box("Whatever !")) //> res1: String = Some other StringBox
useCase(Box(true)) //> res2: String = Omg! its true BooleanBox !
useCase(Box(false)) //> res3: String = its false BooleanBox :(
useCase(Box(4)) //> res4: String = DoubleBox greater than pie !
useCase(Box(3.14)) //> res5: String = DoubleBox with a pie !
useCase(Box(2)) //> res6: String = DoubleBox less than a pie !