MongoDB to BigQuery - mongodb
What is the best way to export data from MongoDB hosted in mlab to google bigquery?
Initially, I am trying to do one time load from MongoDB to BigQuery and later on I am thinking of using Pub/Sub for real time data flow to bigquery.
I need help with first one time load from mongodb to bigquery.
In my opinion, the best practice is building your own extractor. That can be done with the language of your choice and you can extract to CSV or JSON.
But if you looking to a fast way and if your data is not huge and can fit within one server, then I recommend using mongoexport. Let's assume you have a simple document structure such as below:
{
"_id" : "tdfMXH0En5of2rZXSQ2wpzVhZ",
"statuses" : [
{
"status" : "dc9e5511-466c-4146-888a-574918cc2534",
"score" : 53.24388894
}
],
"stored_at" : ISODate("2017-04-12T07:04:23.545Z")
}
Then you need to define your BigQuery Schema (mongodb_schema.json) such as:
$ cat > mongodb_schema.json <<EOF
[
{ "name":"_id", "type": "STRING" },
{ "name":"stored_at", "type": "record", "fields": [
{ "name":"date", "type": "STRING" }
]},
{ "name":"statuses", "type": "record", "mode": "repeated", "fields": [
{ "name":"status", "type": "STRING" },
{ "name":"score", "type": "FLOAT" }
]}
]
EOF
Now, the fun part starts :-) Extracting data as JSON from your MongoDB. Let's assume you have a cluster with replica set name statuses, your db is sample, and your collection is status.
mongoexport \
--host statuses/db-01:27017,db-02:27017,db-03:27017 \
-vv \
--db "sample" \
--collection "status" \
--type "json" \
--limit 100000 \
--out ~/sample.json
As you can see above, I limit the output to 100k records because I recommend you run sample and load to BigQuery before doing it for all your data. After running above command you should have your sample data in sample.json BUT there is a field $date which will cause you an error loading to BigQuery. To fix that we can use sed to replace them to simple field name:
# Fix Date field to make it compatible with BQ
sed -i 's/"\$date"/"date"/g' sample.json
Now you can compress, upload to Google Cloud Storage (GCS) and then load to BigQuery using following commands:
# Compress for faster load
gzip sample.json
# Move to GCloud
gsutil mv ./sample.json.gz gs://your-bucket/sample/sample.json.gz
# Load to BQ
bq load \
--source_format=NEWLINE_DELIMITED_JSON \
--max_bad_records=999999 \
--ignore_unknown_values=true \
--encoding=UTF-8 \
--replace \
"YOUR_DATASET.mongodb_sample" \
"gs://your-bucket/sample/*.json.gz" \
"mongodb_schema.json"
If everything was okay, then go back and remove --limit 100000 from mongoexport command and re-run above commands again to load everything instead of 100k sample.
ALTERNATIVE SOLUTION:
If you want more flexibility and performance is not your concern, then you can use mongo CLI tool as well. This way you can write your extract logic in a JavaScript and execute it against your data and then send output to BigQuery. Here is what I did for the same process but used JavaScript to output in CSV so I can load it much easier to BigQuery:
# Export Logic in JavaScript
cat > export-csv.js <<EOF
var size = 100000;
var maxCount = 1;
for (x = 0; x < maxCount; x = x + 1) {
var recToSkip = x * size;
db.entities.find().skip(recToSkip).limit(size).forEach(function(record) {
var row = record._id + "," + record.stored_at.toISOString();;
record.statuses.forEach(function (l) {
print(row + "," + l.status + "," + l.score)
});
});
}
EOF
# Execute on Mongo CLI
_MONGO_HOSTS="db-01:27017,db-02:27017,db-03:27017/sample?replicaSet=statuses"
mongo --quiet \
"${_MONGO_HOSTS}" \
export-csv.js \
| split -l 500000 --filter='gzip > $FILE.csv.gz' - sample_
# Load all Splitted Files to Google Cloud Storage
gsutil -m mv ./sample_* gs://your-bucket/sample/
# Load files to BigQuery
bq load \
--source_format=CSV \
--max_bad_records=999999 \
--ignore_unknown_values=true \
--encoding=UTF-8 \
--replace \
"YOUR_DATASET.mongodb_sample" \
"gs://your-bucket/sample/sample_*.csv.gz" \
"ID,StoredDate:DATETIME,Status,Score:FLOAT"
TIP: In above script I did small trick by piping output to able to split the output in multiple files with sample_ prefix. Also during split it will GZip the output so you can load it easier to GCS.
From a basic reading of MongoDB's documentation, it sounds like you can use mongoexport to dump your database as JSON. Once you've done that, refer to the BigQuery loading data topic for a description of how to create a table from JSON files after copying them to GCS.
You can read data from MongoDB and stream it to BigQuery. You can find an example in NodeJS here.
This is an extension of the linked example that prevents duplicated records (as long as they are still streaming buffer):
const { BigQuery } = require('#google-cloud/bigquery');
const bigqueryClient = new BigQuery();
...
const jsonData = // Array of documents from MongoDB
const inputRows = jsonData.map(row => ({
insertId: row._id,
json: row
}));
const insertOptions = {
raw: true
};
await bigqueryClient
.dataset(datasetId)
.table(tableId)
.insert(inputRows, insertOptions);
Related
How to load PostgreSQL data into GeoMesa (with the Cassandra datastore)?
I tried to load Postresql data into Geomesa (with a Cassandra datastore), by the JDBC Converter. Loading from shape works fine, so the Cassandra and GeoMesa setup is okay Next I tried to load data from PostgreSQL Command: echo "SELECT year, geom, grondgebruik, crop_code, crop_name, fieldid, global_id, area, perimeter, geohash FROM v_gewaspercelen2018" | bin/geomesa-cassandra ingest -c catalog -P cassandraserver:9042 -k agrodatacube -f parcel -C geomesa.converters.parcel -u -p The converter definition file geomesa.converters.parcel looks like this: geomesa.converters.parcel = { type = "jdbc" connection = "dbc:postgresql://postgresserver:5432/agrodatacube" id-field="toString($5)" fields = [ { name = "fieldid", transform = "$5" } { name = "global_id", transform = "$6" } { name = "year", transform = "$0" } { name = "area", transform = "$7" } { name = "perimeter", transform = "$8" } { name = "grondgebruik", transform = "$2" } { name = "crop_code", transform = "$3" } { name = "crop_name", transform = "$4" } { name = "geohash", transform = "$9" } { name = "geom", transform = "$1" } ] } The geomesa output is: INFO Schema 'parcel' exists INFO Running ingestion in local mode INFO Ingesting from stdin with 1 thread [ ] 0% complete 0 i[ ] 0% complete 0 ingested 0 failed in 00:00:01 ERROR Fatal error running local ingest worker on <stdin> [ ] 0% complete 0 i[ ] 0% complete 0 ingested 0 failed in 00:00:01 INFO Local ingestion complete in 00:00:01 INFO Ingested 0 features with no failures for file: <stdin> WARN Some files caused errors, ingest counts may not be accurate Does someone have a clue what is wrong here?
You can check in the logs folder for more detailed errors. However, just at a first glance, the JDBC converter follows standard result set numbering, meaning the first field is $1 (not $0). In addition, you may need to transform your geometry with a transform function, i.e. geometry($2).
Thanks Emilio, both suggestions made sence! Made the converter field count start at 1 Inside the converter definition file changed { name = "geom", transform = "$2" } into { name = "geom", transform = "geometry($2)" } The SQL Select command should be: SELECT year, ST_AsText(geom), .... FROM v_gewaspercelen2018 By the way, username and password are part of the connection-string (which is inside file geomesa.converters.parcel): connection = "dbc:postgresql://postgresserver:5432/agrodatacube?user=username&password=password" So the -u and -p flags do not appear in the final command: echo "SELECT year, ST_AsText(geom), grondgebruik, crop_code, crop_name, fieldid, global_id, area, perimeter, geohash FROM v_gewaspercelen2018" | bin/geomesa-cassandra ingest -c catalog -P cassandraserver:9042 -k agrodatacube -f parcel -C geomesa.converters.parcel With these changes it works. Thanks again! Hugo
How to enable Javascript in Druid
I have been using Druid for the past week and wanted to enable javascript for some postAggregations. I think I followed the outlined steps and updated the common.runtime.properties file in ../con f/druid/_common/ to include druid.javascript.enabled=true. I then stopped the current processes and re-ran the Quickstart procedures, but it still says that JavaScript is disabled: { "error" : "Unknown exception", "errorMessage" : "Instantiation of [simple type, class io.druid.query.aggregation.post.JavaScriptPostAggregator] value failed: JavaScript is disabled. (through reference chain: java.util.ArrayList[0])", "errorClass" : "com.fasterxml.jackson.databind.JsonMappingException", "host" : null } I am currently running it in the 'Quickstart' configuration - single local machine. Any pointers? Thanks!
JavaScript Query For druid Aggregation. Save the file as .body and hit the curl request. This is a sample query for Average value. curl -X POST "http://localhost:8082/druid/v2/?pretty" \ -H 'content-type: application/json' -d #query.body { "queryType":"groupBy", "dataSource":"whirldata", "granularity":"all", "dimensions":[], "aggregations":[{"name":"rows","type":"count","fieldName":"rows"}, {"name":"TargetDOS","type":"doubleSum","fieldName":"Target DOS"}],"postAggregations":[ { "type": "javascript", "name": "Target DOS Average", "fieldNames": ["TargetDOS", "rows"], "function": "function(TargetDOS, rows) { return Math.abs(TargetDOS) / rows; }" }], "intervals":[ "2006-01-01T00:00:00.000Z/2020-01-01T00:00:00.000Z" ]}
The part you are missing is likely that the quickstart reads configs from conf-quickstart rather than conf. So try editing conf-quickstart/druid/_common/common.runtime.properties.
Mongodb Query to CSV dump (mlab hosted mongodb)
I am querying an already populated mlab MongoDB database, and I want to store the resulting multiple documents in one single CSV file. EDIT: output format of CSV file I hope to get: uniqueid status date 191b117fcf5c 0 2017-03-01 15:26:28.217000 191b117fcf5c 1 2017-03-01 18:26:28.217000 MongoDB database document format is { "_id": { "$oid": "58b6bcc00bd666355805a3ee" }, "sensordata": { "operation": "chgstatus", "user": { "status": "1", "uniqueid": "191b117fcf5c" } }, "created_date": { "date": "2017-03-01 17:51:17.216000" } } Database name:mparking_sensor collection name: demo The python code to query is as follows: # -*- coding: utf-8 -*- """ Created on Wed Mar 01 18:55:18 2017 #author: Being_Rohit """ import pymongo uri = 'mongodb://#####:*****#ds157529.mlab.com:57529/mparking_sensor' client = pymongo.MongoClient(uri) db = client.get_default_database().demo print db results = db.find() f = open("mytest.csv", "w") for record in results: query1 = (record["sensordata"]["user"],record["created_date"]) print query1 print "done" client.close() EDIT: output format of query1 I am getting is: ({u'status': u'0', u'uniqueid': u'191b117fcf5c'}, {u'date': u'2017-03-01 17:51:08.263000'}) Does someone know the correct way to dump this data in a .csv file (pandas/or any other means) or some other approach for further prediction based analysis to do on it in future like linear regression?
Mongoexport will do the job for you. It can, uniquely among native MongoDB tools, export in CSV format, limited to a specific set of fields. Your mongoexport command would be something like this: mongoexport.exe \ --db mparking_sensor \ --collection demo \ --type=csv \ --fields sensordata.user.uniqueid,sensordata.user.status,created_date That will export something like the following: sensordata.user.uniqueid,sensordata.user.status,created_date 191b117fcf5c,0,2017-03-01T15:26:28.217000Z 191b117fcf5c,1,2017-03-01T18:26:28.217000Z
I was trying to export a collection to csv using mlabs 'export collection' they make it harder than it needs to be. So i used https://studio3t.com and connected using the standard MongoDB URI
How to create Avro tables using HCatalog REST API before Hive 0.14?
I couldn't find any docs explain the syntax or grammar for the JSON used by HCatalog REST API. The office guide ( https://cwiki.apache.org/confluence/display/Hive/WebHCat+Reference+PutTable) only gives a very simple case without saying anything useful about how the JSON part is defined. I tried the following, but without luck: curl -X PUT -HContent-type:application/json -d ' { "format": { "storedAs": "INPUTFORMAT \"org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat\" OUTPUTFORMAT \"org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat\"", "rowFormat": { "serde": { "name": "org.apache.hadoop.hive.serde2.avro.AvroSerDe" } } } "tblproperties" : [ "avro.schema.url": "hdfs://xxxx" ] } ' \ 'http://<host>:50111/templeton/v1/ddl/database/default/table/table1?user.name=hive' any idea? Thanks,
Can i use mongoexport --query <file> where file is a list of conditions
I have an array of ids stored in a file, and I want to retrieve their data from the mongdb so i looked into the mongoexport method. it seems --query option can only accept a json instead read a large json or array from a file. In my case, it is about 4000 ids stored in the file. Is there a solution to this? I was able to use mongoexport --db db --collection collection --field name --csv -oout ~/data.csv but how to read query conditions from a file for example, for mongoid in rails application, query like this is Data.where(:_id.in => array). or is it possible to do from mongo shell by executing a javscript file tks
I believe you can use a javascript to output the array you need. you can use "printjson" command in your script, for example: create a script.js javascript file as following: script.js: printjson( db.albums.find({_id : 18}, {"images" : 1,"_id":0}).toArray() ) Call hi as follow: mongo test script.js > out.txt In my local environment albums collection has the following structure: db.albums.findOne({"_id":18 { "_id" : 18, "images" : [ 2926, 5377, 8036, 9023, 10119, 11543, 12305, 12556, 12576, 13753, 14414, 14865, 15193, 15933, 17156, 17314, 17391, 20168, 21705, 22016, 22348, 23036, 23452, 24112, 27086, 27310, 27864, 28092, 29184, 29190, 29250, 29354, 29454, 29563, 30366, 30619, 31390, 31825, 31906, 32339, 32674, 33307, 33844, 37475, 37976, 38717, 38774, 39801, 41369, 41752, 44977, 45384, 45643, 46918, 47069, 50099, 52755, 54314, 54497, 62338, 63438, 63572, 63600, 65631, 66953, 67160, 67369, 69802, 71087, 71127, 71282, 73123, 73201, 73954, 74972, 76279, 77054, 78397, 78645, 78936, 79364, 79707, 83065, 83142, 83568, 84160, 85391, 85443, 85488, 86143, 86240, 86949, 89406, 89846, 92591, 92639, 92655, 93844, 93934, 94987, 95324, 95431, 95817, 95864, 96230, 96975, 97026 ] } > , so the output I got was: $ cat out.txt MongoDB shell version: 2.2.1 connecting to: test [ { "images" : [ 2926, 5377, 8036, 9023, 10119, 11543, 12305, 12556, 12576, 13753, 14414, 14865, 15193, 15933, 17156, 17314, 17391, 20168, 21705, 22016, 22348, 23036, 23452, 24112, 27086, 27310, 27864, 28092, 29184, 29190, 29250, 29354, 29454, 29563, 30366, 30619, 31390, 31825, 31906, 32339, 32674, 33307, 33844, 37475, 37976, 38717, 38774, 39801, 41369, 41752, 44977, 45384, 45643, 46918, 47069, 50099, 52755, 54314, 54497, 62338, 63438, 63572, 63600, 65631, 66953, 67160, 67369, 69802, 71087, 71127, 71282, 73123, 73201, 73954, 74972, 76279, 77054, 78397, 78645, 78936, 79364, 79707, 83065, 83142, 83568, 84160, 85391, 85443, 85488, 86143, 86240, 86949, 89406, 89846, 92591, 92639, 92655, 93844, 93934, 94987, 95324, 95431, 95817, 95864, 96230, 96975, 97026 ] } ] Regards, Moacy