For example, sqrt(x). Based on my searches (perhaps most helpfully here), I know that I can import Darwin or UIKit, etc, and get sqrt to work. (Or as per here, .squareRoot()) But for the future, with who knows what function I want to use, how do I find that out on my own without somebody having already asked that here?
In C++ (what I'm more used to), all I have to do is go to any sort of C++ documentation site, search sqrt or square root, and I find out I should include cmath or math.h, and if I want to see what else is in cmath, that's super easy, I just click on it.
But I am having an absolutely terrible time trying to do similar with Swift. If I search either built-in or online documentation, the best searching for sqrt gets me is this, but this has absolutely no indication that I could use this by importing Darwin, not to mention a total lack of description. (Searching square root does find the .squareRoot() luckily, but that's not needing import, so isn't really the question)
Even if I already know (or guess) and import it, then option-click sqrt after I type it, it lets me know it exists and is part of Darwin.C.math, but I can't even click on that to see what else there is in that.
How do you learn this stuff?
Even if I already know (or guess) and import it, then option-click sqrt after I type it, it lets me know it exists and is part of Darwin.C.math, but I can't even click on that to see what else there is in that.
Hope I'm not misunderstanding the issue here, but in your IDE, have you tried cmd-clicking – rather than option-clicking, as you've noted – the function that you want to look up? This will take you directly to Darwin.C.math rather than just telling you that sqrt() lives inside there.
Related
I'm trying to increase my speed of typing code in a Unity project, and finding a big hole in MonoDevelop.
If I have a method like:
void Foo(float x, float y, float, z) {
//
}
When I start typing
Fo
I want it to autofill with:
Foo(x,y,z)
with the x, y, and z, highlighted green.
Currently, it only autofills with
Foo
I would like functionality like what happens when you type for and hit tab twice, where it autofills:
for(int i = 0; i < max; i++) {
}
with max highlighted in green.
I feel like there should be a built in way to do this, but I can't find anything here or on the web. I know for Java in eclipse it has similar functionality to what I want here.
EDIT: Based on a more refined search from the answer below, I was able to confirm that it doesn't seem like you can do this in MonoDevelop. However, this search revealed that Microsoft just released Visual Studio for Mac, which runs super nicely with Unity and has much better code completion features compared to monodevelop. It still doesn't fill in the parameters, but it at least gives you a little popup window guiding you through which ones you need and what type they are. A huge improvement to say the least. After playing around with it for literally 5 minutes, I'm already prepared to scrap MonoDevelop entirely. The nice thing is the interface is basically identical, just seems like a much more polished and modern version.
for+tab+tab is a Code Snippet that has a whole syntax devoted to typing short things and getting long ones. The for syntax is generally unchanged throughout and so it's easy to write a snippet to cover the general use-case.
Methods are not typically in this category of autocompletion, as the number, type, and name of the paramters will change depending on what method is being completed, and so behavior varies by IDE. Eclipse does the best job I've ever seen, even going so far as to make an educated guess as to which variables available in the current scope would be appropriate as parameters! Its not always right (eg. I've gotten something like Translate(xpos, xpos, xpos) before, when Translate(_x, _y, _z) would have been better).
How, and if, you can get Monodevelop to autocomplete method parameters will likely revolve around these snippets. I don't use MD myself so you'll have to dig into the documentation on making your own snippets, but I suspect it won't be possible (based on my own experience reading the snippets docs for Visual Studio).
I've been doing Progress 4GL for 8 years though it's not my main responsibility. I do C++ and Java a lot more. When programming in other language it's suggested to have the declaration close to the usage. With 4GL however I see people place the declaration on top of the file. It's even in the coding standard.
I think placing them on top of them file would lead to 'vertical separation' problem. In most other language it's even suggested to do the assignment at the same line as the declaration.
The question is why it's suggested to do so in 4GL ? What's the benefit ? I know that it's possible to place the declaration anywhere in the file, given that it's declared before it is used.
I think the answer is to do with scoping, or the lack of it, within Progress 4GL.
If you are used to Java, say, and read a Progress 4GL program, that looks like
DO:
DEFINE VARIABLE x AS INTEGER INITIAL 4.
DISPLAY x.
END.
then you wouldn't expect to be able to use this value of x anywhere else in the program, and that any changes made in the block, wouldn't effect anything outside the block.
As I understand it, all progress variables declared within the body of a program are scoped to the whole program, unless they are declared are within an internal procedure or function, in which case they are scoped to the procedure or function.
(Incidentally any default buffers [i.e. undeclared] you use within an internal procedure/function are scoped to the whole program, not just the procedure or function, so you need to be very careful to explicity declare buffers in functions you intend ot use recursively).
I therefore think the convention of declaring variables at the beginning of a program is in order to reflect the fact that Progress will treat them has having been done so, regardless of where you put the declaration.
There is absolutely no benefit in scoping anything to the program as a whole when it could be scoped smaller.
Smaller scopes are easier to test, give less possibility of namespace conflict, and less opportunity for error.
Tightly scoped named buffers are especially useful when writing to the database because they eliminate the possibility of there ever being some other part of your code that uses the same buffer and causes a share-lock, i.e., this fails to compile:
do for b-customer transaction:
find b-customer where .... exclusive...
...
end.
...
find b-customer...
On the other hand, procedures and functions (and include files...) that share scope with the main body of code are a major source of bugs, because when you pick up your variable or whatever, you can never be entirely certain where it has been...
All of this is just basic Structured Programming, of course. It's true for every language and has been accepted since the 70's.
The "reason" that you usually see variables defined at the top is simple. Habit. That is just how things were done in the bad old days.
A lot of old code, or code written by old fossils, is written that way. No matter the language.
Some languages (COBOL springs to mind) even formalized it.
Is there any advantage to such an approach?
Not especially. I guess you could argue "they are all in one place and easy to find" but that isn't very compelling.
"Habit" is actually more compelling ;) If you are working with a team that expects a certain style or in an application where a particular style is prevalent then you should think twice before unilaterally throwing out a new way of doing things - the confusion could be a bigger problem than the advantages gained.
I need to rewrite the linkage function in matlab. Now, as I examine it, I realized there is a method called linkagemex inside of it. But I simply cannot step into this method to see its code. Can anyone help me out with this strange situastion?
function Z= linkage (Y, method, pdistArg, varargin)
Z=linkagemex(Y,method);
PS. I think I am pretty good at learning, but matlab is not so easy to learn. If you have good references to learn it well, feel free to let me know. Thanks very much for your time and attention.
As #m.s. mentions, you've found a call to a MEX function. MEX functions are implemented as C code that is compiled into a function callable by MATLAB.
As you've found, you can't step into this method (as it is compiled C code, not MATLAB code), and you don't have access to the C source code, as it's not supplied with MATLAB.
Normally, you would be at kind of a dead end here. Fortunately, that's not quite the case with linkagemex. You'll notice on line 240 of linkage.m that it actually does a test to see whether linkagemex is present. If it isn't, it instead calls a local subfunction linkageold.
I think you can assume that linkageold does at least roughly the same thing as linkagemex. You may like to test them out with a few suitable input arguments to see if they give the same results. If so, then you should be able to rewrite linkage using the code from linkageold rather than linkagemex.
I'm going to comment more generally, related to your PS. Over the last few days I've been answering a few of your questions - and you do seem like a fast learner. But it's not really that MATLAB is hard to learn - you should realize that what you're attempting (rewriting the clustering behaviour of phytree) is not an easy thing to do for even a very advanced user.
MathWorks write their stuff in a way that makes it (hopefully) easy to use - but not necessarily in a way that makes it easy for users to extend or modify. Sometimes they do things for performance reasons that make it impossible for you to modify, as you've found with linkagemex. In addition, phytree is implemented using an old style of OO programming that is no longer properly documented, so even if you have the code, it's difficult to work out what it even does, unless you happen to have been working with MATLAB for years and remember how the old style worked.
My advice would be that you might find it easier to just implement your own clustering method from scratch, rather than trying to build on top of phytree. There will be a lot of further headaches for you down the road you're on, and mostly what you'll learn is that phytree is implemented in an obscure old-fashioned way. If you take the opportunity to implement your own from scratch, you could instead be learning how to implement things using more modern OO methods, which would be more useful for you in the future.
Your call though, that's just my thoughts. Happy to continue trying to answer questions when I can, if you choose to continue with the phytree route.
You came across a MEX function, which "are dynamically linked subroutines that the MATLAB interpreter loads and executes". Since these subroutines are natively compiled, you cannot step into them. See also the MATLAB documentation about MEX functions.
It seems easy to find general info on a specific 'operator' (method, syntactic sugar), but I can't seem to find anything that has a list of all, or even just most, of these goodies. As such, it makes it fairly difficult, or at least overly time consuming, to work through learning the language.
I have already looked over this question. While it has great information, and definitely shows you how to find any information you need, I was hoping for something like a 'pocket ref' that just had all the relevant info and was only dedicated to that.
So, my question is this:
Is there a such a list?
Am I getting ahead of myself by looking for such a reference early on in learning the language?
Thanks in advance.
Well, a list of all operators makes as much sense as a list of all methods in the library, regardless of the type. It isn't going to be particularly useful except for finding information about a specific operator.
However, if you do want one, at any ScalaDoc site (http://www.scala-lang.org/api/current/ for the standard library) there is an alphabetic index just under the search bar. The first link (#) lists all the non-alphabetic methods (i.e. "operators").
Many of these are rarely used, or only in specific circumstances.
Obviously, any other library can introduce its own operators, and you'll need to check its own documentation.
How would you define "unwanted code"?
Edit:
IMHO, Any code member with 0 active calling members (checked recursively) is unwanted code. (functions, methods, properties, variables are members)
Here's my definition of unwanted code:
A code that does not execute is a dead weight. (Unless it's a [malicious] payload for your actual code, but that's another story :-))
A code that repeats multiple times is increasing the cost of the product.
A code that cannot be regression tested is increasing the cost of the product as well.
You can either remove such code or refactor it, but you don't want to keep it as it is around.
0 active calls and no possibility of use in near future. And I prefer to never comment out anything in case I need for it later since I use SVN (source control).
Like you said in the other thread, code that is not used anywhere at all is pretty much unwanted. As for how to find it I'd suggest FindBugs or CheckStyle if you were using Java, for example, since these tools check to see if a function is used anywhere and marks it as non-used if it isn't. Very nice for getting rid of unnecessary weight.
Well after shortly thinking about it I came up with these three points:
it can be code that should be refactored
it can be code that is not called any more (leftovers from earlier versions)
it can be code that does not apply to your style-guide and way-of-coding
I bet there is a lot more but, that's how I'd define unwanted code.
In java i'd mark the method or class with #Deprecated.
Any PRIVATE code member with no active calling members (checked recursively). Otherwise you do not know if your code is not used out of your scope analysis.
Some things are already posted but here's another:
Functions that almost do the same thing. (only a small variable change and therefore the whole functions is copy pasted and that variable is changed)
Usually I tell my compiler to be as annoyingly noisy as possible, that picks 60% of stuff that I need to examine. Unused functions that are months old (after checking with the VCS) usually get ousted, unless their author tells me when they'll actually be used. Stuff missing prototypes is also instantly suspect.
I think trying to implement automated house cleaning is like trying to make a USB device that guarantees that you 'safely' play Russian Roulette.
The hardest part to check are components added to the build system, few people notice those and unused kludges are left to gather moss.
Beyond that, I typically WANT the code, I just want its author to refactor it a bit and make their style the same as the rest of the project.
Another helpful tool is doxygen, which does help you (visually) see relations in the source tree.. however, if its set at not extracting static symbols / objects, its not going to be very thorough.