Matlab Randi lab Vectors - matlab

Im doing a lab using matlab and have hit a bit of a snag. The prompt is:
a. Generate a vector to manipulate in the following exercises by using a random
number generator to create "pull-ups" counts for 50 people. The counts should be
from 1 to 10. Use this vector of counts for the next two problems.
b. How many people did more than 5 pull-ups? Do your results make sense for a
uniformly distributed random number generator?
c. Generate another vector for "pull-ups" counts 50 athletes, so this time use the
range from 11 to 20. Append this new vector to the previous vector (now you have
100 "pull-ups" counts).
d. Find the average number of "pull-ups" for the 100 total people. Do your results
make sense?
e. Use the 100 person vector in c and create a new vector that contains only the
counts from the odd-numbered índices (not the odd value counts, instead the
counts for every other person starting with person 1).
f. Use the 100 person vector in c and make a new vector of the "even-valued
counts".
Now, I can do parts a. and b. with no problem, but i do not have an idea on how to do part c. Ive been trying to do this
x=randi(20,11,50)
now i know that i get 110 values that range from 1 to 20 doing what i put above. But im trying to get 50 values from 11 to 20 and add those values to the vector in part a so that i have 100 values, with 50 ranging from 1-10 and the other 50 ranging from 11-20. Any idea what im doing wrong?

You need to provide an array as the first input to randi to specify the lower and upper limits of the random integers. If you specify just a scalar, then values between 1 and your provided values will be returned. The second and third inputs are the size of the output so we want the output to be 50 x 1
x = randi([11 20], 50, 1)

Related

Interpreting time series dimension?

I am wondering if anyone can explain the interpretation of the size (number of feature) in a time series? For example consider a simple script in Matlab
X= randn(2,5,2)
X(:,:,1) =
-0.5530 0.4291 0.3937 -1.2534 0.2811
-1.4926 -0.7019 -0.8305 -1.4034 1.9545
X(:,:,2) =
0.2004 0.1438 2.3655 -0.1589 0.7140
0.4905 0.2301 -0.7813 -0.6737 0.2552
Assume X is a time series with the following output
This generates 2 vectors of length 5 each has 2 rows. Can anyone tell me what is exactly the meaning of first 2 and 5?
In some websites it says a creating 5 vectors of length 5 and size 2. What does size mean here?
Is 2 like number of features and 5 is like number of time series. The reason for this confusion is because I do not understand how to interpret following sentence:
"Generate 2 vector-valued sequences of length 5; each vector has size
2."
What do size 2 and length 5 mean here?
This entirely depends on your data, and how you want to store this. If you have some 2D data over time, I find it convenient to have a data matrix with in the 1st and 2nd dimension the 2D data per time step, and in the 3rd dimension time.
Say I have a movie of 1920 by 1080 pixels with 100 frames, I'd store this as mov = rand(1080,1920,100) (1080 and 1920 swapped because of row, col order of indexing). So now mov(:,:,1) would give me the first frame etc.
BTW, your X is a normal array, not to be confused with the timeseries object.

Retrieve a specific permutation without storing all possible permutations in Matlab

I am working on 2D rectangular packing. In order to minimize the length of the infinite sheet (Width is constant) by changing the order in which parts are placed. For example, we could place 11 parts in 11! ways.
I could label those parts and save all possible permutations using perms function and run it one by one, but I need a large amount of memory even for 11 parts. I'd like to be able to do it for around 1000 parts.
Luckily, I don't need every possible sequence. I would like to index each permutation to a number. Test a random sequence and then use GA to converge the results to find the optimal sequence.
Therefore, I need a function which gives a specific permutation value when run for any number of times unlike randperm function.
For example, function(5,6) should always return say [1 4 3 2 5 6] for 6 parts. I don't need the sequences in a specific order, but the function should give the same sequence for same index. and also for some other index, the sequence should not be same as this one.
So far, I have used randperm function to generate random sequence for around 2000 iterations and finding a best sequence out of it by comparing length, but this works only for few number of parts. Also using randperm may result in repeated sequence instead of unique sequence.
Here's a picture of what I have done.
I can't save the outputs of randperm because I won't have a searchable function space. I don't want to find the length of the sheet for all sequences. I only need do it for certain sequence identified by certain index determined by genetic algorithm. If I use randperm, I won't have the sequence for all indexes (even though I only need some of them).
For example, take some function, 'y = f(x)', in the range [0,10] say. For each value of x, I get a y. Here y is my sheet length. x is the index of permutation. For any x, I find its sequence (the specific permutation) and then its corresponding sheet length. Based on the results of some random values of x, GA will generate me a new list of x to find a more optimal y.
I need a function that duplicates perms, (I guess perms are following the same order of permutations each time it is run because perms(1:4) will yield same results when run any number of times) without actually storing the values.
Is there a way to write the function? If not, then how do i solve my problem?
Edit (how i approached the problem):
In Genetic Algorithm, you need to crossover parents(permutations), But if you crossover permutations, you will get the numbers repeated. for eg:- crossing over 1 2 3 4 with 3 2 1 4 may result something like 3 2 3 4. Therefore, to avoid repetition, i thought of indexing each parent to a number and then convert the number to binary form and then crossover the binary indices to get a new binary number then convert it back to decimal and find its specific permutation. But then later on, i discovered i could just use ordered crossover of the permutations itself instead of crossing over their indices.
More details on Ordered Crossover could be found here
Below are two functions that together will generate permutations in lexographical order and return the nth permutation
For example, I can call
nth_permutation(5, [1 2 3 4])
And the output will be [1 4 2 3]
Intuitively, how long this method takes is linear in n. The size of the set doesn't matter. I benchmarked nth_permutations(n, 1:1000) averaged over 100 iterations and got the following graph
So timewise it seems okay.
function [permutation] = nth_permutation(n, set)
%%NTH_PERMUTATION Generates n permutations of set in lexographical order and
%%outputs the last one
%% set is a 1 by m matrix
set = sort(set);
permutation = set; %First permutation
for ii=2:n
permutation = next_permute(permutation);
end
end
function [p] = next_permute(p)
%Following algorithm from https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order
%Find the largest index k such that p[k] < p[k+1]
larger = p(1:end-1) < p(2:end);
k = max(find(larger));
%If no such index exists, the permutation is the last permutation.
if isempty(k)
display('Last permutation reached');
return
end
%Find the largest index l greater than k such that p[k] < p[l].
larger = [false(1, k) p(k+1:end) > p(k)];
l = max(find(larger));
%Swap the value of p[k] with that of p[l].
p([k, l]) = p([l, k]);
%Reverse the sequence from p[k + 1] up to and including the final element p[n].
p(k+1:end) = p(end:-1:k+1);
end

Changing numbers for given indices between matrices

I'm struggling with one of my matlab assignments. I want to create 10 different models. Each of them is based on the same original array of dimensions 1x100 m_est. Then with for loop I am choosing 5 random values from the original model and want to add the same random value to each of them. The cycle repeats 10 times chosing different values each time and adding different random number. Here is a part of my code:
steps=10;
for s=1:steps
for i=1:1:5
rl(s,i)=m_est(randi(numel(m_est)));
rl_nr(s,i)=find(rl(s,i)==m_est);
a=-1;
b=1;
r(s)=(b-a)*rand(1,1)+a;
end
pert_layers(s,:)=rl(s,:)+r(s);
M=repmat(m_est',s,1);
end
for k=steps
for m=1:1:5
M_pert=M;
M_pert(1:k,rl_nr(k,1:m))=pert_layers(1:k,1:m);
end
end
In matrix M I am storing 10 initial models and want to replace the random numbers with indices from rl_nr matrix into those stored in pert_layers matrix. However, the last loop responsible for assigning values from pert_layers to rl_nr indices does not work properly.
Does anyone know how to solve this?
Best regards
Your code uses a lot of loops and in this particular circumstance, it's quite inefficient. It's better if you actually vectorize your code. As such, let me go through your problem description one point at a time and let's code up each part (if applicable):
I want to create 10 different models. Each of them is based on the same original array of dimensions 1x100 m_est.
I'm interpreting this as you having an array m_est of 100 elements, and with this array, you wish to create 10 different "models", where each model is 5 elements sampled from m_est. rl will store these values from m_est while rl_nr will store the indices / locations of where these values originated from. Also, for each model, you wish to add a random value to every element that is part of this model.
Then with for loop I am choosing 5 random values from the original model and want to add the same random value to each of them.
Instead of doing this with a for loop, generate all of your random indices in one go. Since you have 10 steps, and we wish to sample 5 points per step, you have 10*5 = 50 points in total. As such, why don't you use randperm instead? randperm is exactly what you're looking for, and we can use this to generate unique random indices so that we can ultimately use this to sample from m_est. randperm generates a vector from 1 to N but returns a random permutation of these elements. This way, you only get numbers enumerated from 1 to N exactly once and we will ensure no repeats. As such, simply use randperm to generate 50 elements, then reshape this array into a matrix of size 10 x 5, where the number of rows tells you the number of steps you want, while the number of columns is the total number of points per model. Therefore, do something like this:
num_steps = 10;
num_points_model = 5;
ind = randperm(numel(m_est));
ind = ind(1:num_steps*num_points_model);
rl_nr = reshape(ind, num_steps, num_points_model);
rl = m_est(rl_nr);
The first two lines are pretty straight forward. We are just declaring the total number of steps you want to take, as well as the total number of points per model. Next, what we will do is generate a random permutation of length 100, where elements are enumerated from 1 to 100, but they are in random order. You'll notice that this random vector uses only a value within the range of 1 to 100 exactly once. Because you only want to get 50 points in total, simply subset this vector so that we only get the first 50 random indices generated from randperm. These random indices get stored in ind.
Next, we simply reshape ind into a 10 x 5 matrix to get rl_nr. rl_nr will contain those indices that will be used to select those entries from m_est which is of size 10 x 5. Finally, rl will be a matrix of the same size as rl_nr, but it will contain the actual random values sampled from m_est. These random values correspond to those indices generated from rl_nr.
Now, the final step would be to add the same random number to each model. You can certainly use repmat to replicate a random column vector of 10 elements long, and duplicate them 5 times so that we have 5 columns then add this matrix together with rl.... so something like:
a = -1;
b = 1;
r = (b-a)*rand(num_steps, 1) + a;
r = repmat(r, 1, num_points_model);
M_pert = rl + r;
Now M_pert is the final result you want, where we take each model that is stored in rl and add the same random value to each corresponding model in the matrix. However, if I can suggest something more efficient, I would suggest you use bsxfun instead, which does this replication under the hood. Essentially, the above code would be replaced with:
a = -1;
b = 1;
r = (b-a)*rand(num_steps, 1) + a;
M_pert = bsxfun(#plus, rl, r);
Much easier to read, and less code. M_pert will contain your models in each row, with the same random value added to each particular model.
The cycle repeats 10 times chosing different values each time and adding different random number.
Already done in the above steps.
I hope you didn't find it an imposition to completely rewrite your code so that it's more vectorized, but I think this was a great opportunity to show you some of the more advanced functions that MATLAB has to offer, as well as more efficient ways to generate your random values, rather than looping and generating the values one at a time.
Hopefully this will get you started. Good luck!

What is the correct way to implement this loop that will average values with a changing counter?

I have looked thoroughly on the internet for an answer to this question, but it seems to be too specific for an answer anywhere else. This is my last stop.
To preface, this is not a homework problem, but it is adapted from an online Coursera course, whose quiz has already passed. I got the correct answer, but it was mostly luck. Also, it is a more of a general programming question than anything related to the course, so I know for a fact that it is within my right to ask it on a public forum.
The last thing is that I'm trying to do this in MatLab; however if you have an answer that is in C++ or Python or any other high level language, that would be wonderful, as I could easily adapt those solutions to MatLab syntax.
Here it is:
I have two vectors, T and M, each with 600,000 elements/entries/integers.
T is entered as milliseconds from 1 to 600,000 in ascending order, and each element in M represents 'on' or 'off' (entered as 1 or 0 respectively) for each corresponding millisecond entry in T. So there are random 1's and 0's in M that correspond to a particular millisecond from 1 to 600,000 in T.
I need to take, starting with the 150th millisecond of T, and in 150 element/millisecond increments from there on (inclusive), the average millisecond value of those groups of 150 but ONLY of those milliseconds whose entries are 1 in M ('on'). For example, I need to look at the first 150 milliseconds in T, see which ones have a value of 1 in M, and then average them. Then I need to do it again with entries 151 to 300 in T, then 301 to 450, etc. etc. These new averages should also be stored in a new vector. The problem is, the number of corresponding 1's in M isn't going to be the same for every group of 150 milliseconds in T. (And yes, we are trying to average the actual value of the milliseconds, so the values we are using to average and the order of the entries in T will be the same).
My attempt:
It turns out there are only 53,583 random 1's in M (out of the 600,000 entries, the rest are 0). I used a 'find' operator to extract those entries from M that are a 1 into a new vector K that has the millisecond value corresponding from T. So K looks like a bunch of random numbers in ascending order, which is just a list of all the milliseconds in T who are 'on' (assigned a 1 in M).
So K looks something like [2 5 11 27 39 40 79 ...... 599,698 599,727 etc.] (all of the millisecond values who are a 1 in M).
So I have the vector K which is all of the values that I need to average in groups of 150, but the problem is that I need to go in groups of 150 based on the vector T (1 to 600,000), which means there won't always be the same number of 1's (or values in K) in every group of 150 milliseconds in T, which in turn means the number I need to divide by to get the average of each group is going to change for each group of 150. I know I need to use a loop to do the average millisecond value for every 150 entries, but how do I get the dividing number (the number of entries for each group of 150 who is assigned a 1 or 'on') to change on each iteration of the loop? Is there a way to bind T and M together so that they only use the requisite values from K whenever there is a 1 in M, and then just use a simple counter to average?
It's not a complicated problem, but it is very hard to explain. Sorry about that! I hope I explained as clearly as I could. Any help would be appreciated, although I'm sure you'll have questions first.
Thank you very much!
I think this should work OK.
sz = length(T);
n = sz / 150;
K = T.*M';
t = 1;
aver = zeros(n-1,1); % Your result vector
for i = 1:150:sz-150
aver(t) = mean(K(i:(i+150)-1));
t = t + 1;
end
-Rob

generating odd random numbers using Matlab

I need some help on how to generate odd random numbers using Matlab. How do you generate odd random numbers within a given interval, say between 1 and 100?
Well, if I could generate EVEN random numbers within an interval, then I'd just add 1. :)
That is not as silly as it sounds.
Can you generate random integers? If you could, why not multiply by 2? Then you would have EVEN random integers. See above for what to do next.
There are tools in MATLAB to generate random integers in an interval. If not, then you could write your own trivially enough. For example, what does this do:
r = 1 + 2*floor(rand(N,1)*50);
Or this:
r = 1 + 2*randi([0 49], N,1);
Note that Rody edited this answer, but made a mistake when he did so when using randi. I've corrected the problem. Note that randi intentionally goes up to only 49 in its sampling as I have changed it. That works because 2*49 + 1 = 99.
So how about in the rand case? Why have I multiplied by 50 there, and not 49? This is taken from the doc for rand:
"r = rand(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard uniform distribution on the open interval (0,1)."
So rand NEVER generates an exact 1. It can generate a number slightly smaller than 1, but never 1. So when I multiply by 50, this results in a number that is never exactly 50, but only potentially slightly less than 50. The floor then generates all integers between 0 and 49, with essentially equal probability. I suppose someone will point out that since 0 is never a possible result from rand, that the integer 0 will be under-sampled by this expression by an amount of the order of eps. If you will generate that many samples that you can see this extent of undersampling, then you will need a bigger, faster computer to do your work. :)