Generate trajectories for 3 agents/robots with same tangent in specific point - MATLAB - matlab

I want to simulate the movements of 3 robots/agents in space and I would like to generate 3 different trajectories which have one constraint: in a certain time T the all the trajectories must have the same tangent.
I want something like in the following picture:
I need to do it through MATLAB and/or SIMULINK.
Thanks a lot for your help.

I do not know if this is enough for what I need or not but I probably figured out something.
What I did is to fit a polynomial to some points and constraining the derivative of the polynomial in a certain point to be equal to 0.
I used the following function:
http://www.mathworks.com/matlabcentral/fileexchange/54207-polyfix-x-y-n-xfix-yfix-xder-dydx-
It is pretty easy, but it saved me some work.
And, if you try the following:
% point you want your functions to pass
p1 = [1 1];
p2 = [1 3];
% First function
x1 = linspace(0,4);
y1 = linspace(0,4);
p = polyfix(x1,y1,degreePoly,p1(1),p1(2),[1],[0]);
% p = [-0.0767 0.8290 -1.4277 1.6755];
figure
plot(x1,polyval(p,x1))
xlim([0 3])
ylim([0 3])
grid on
hold on
% Second function
x2 = linspace(0,4);
y2 = linspace(0,4);
p = polyfix(x2,y2,degreePoly,[1],[3],[1],[0])
% p = [0.4984 -2.7132 3.9312 1.2836];
plot(x2,polyval(p,x2))
xlim([0 3])
ylim([0 3])
grid on
If you don't have the polyfix function and you don't want to download it you can try the same code commenting the polyfix lines:
p = polyfix(x1,y1,degreePoly,p1(1),p1(2),[1],[0]);
p = polyfix(x2,y2,degreePoly,p2(1),p2(1),[1],[0]);
And uncommenting the lines:
% p = [-0.0767 0.8290 -1.4277 1.6755];
% p = [0.4984 -2.7132 3.9312 1.2836];
You will get this:
Now I will use this polynomial as a position (x,y) over time of my robots and I think I should be done. The x of the polynomial will be also the time, in this way I am sure that the robots will arrive in the 0-derivative point at the same time.
What do you think? Does it make sense?
Thanks again.

To have tangents same all the time, curves (or trajectories) needs to be always parallel. Generate trajectory for one object and keep other objects at fixed distance apart and following master trajectory.
In image provides if we take time next to three dots trajectories will not be same (or parallel) as objects moved in different directions. So i guess you've to keep then always parallel

Related

Draw a line with non-Cartesian coordinates in MATLAB

MATLAB's surf command allows you to pass it optional X and Y data that specify non-cartesian x-y components. (they essentially change the basis vectors). I desire to pass similar arguments to a function that will draw a line.
How do I plot a line using a non-cartesian coordinate system?
My apologies if my terminology is a little off. This still might technically be a cartesian space but it wouldn't be square in the sense that one unit in the x-direction is orthogonal to one unit in the y-direction. If you can correct my terminology, I would really appreciate it!
EDIT:
Below better demonstrates what I mean:
The commands:
datA=1:10;
datB=1:10;
X=cosd(8*datA)'*datB;
Y=datA'*log10(datB*3);
Z=ones(size(datA'))*cosd(datB);
XX=X./(1+Z);
YY=Y./(1+Z);
surf(XX,YY,eye(10)); view([0 0 1])
produces the following graph:
Here, the X and Y dimensions are not orthogonal nor equi-spaced. One unit in x could correspond to 5 cm in the x direction but the next one unit in x could correspond to 2 cm in the x direction + 1 cm in the y direction. I desire to replicate this functionality but drawing a line instead of a surf For instance, I'm looking for a function where:
straightLine=[(1:10)' (1:10)'];
my_line(XX,YY,straightLine(:,1),straightLine(:,2))
would produce a line that traced the red squares on the surf graph.
I'm still not certain of what your input data are about, and what you want to plot. However, from how you want to plot it, I can help.
When you call
surf(XX,YY,eye(10)); view([0 0 1]);
and want to get only the "red parts", i.e. the maxima of the function, you are essentially selecting a subset of the XX, YY matrices using the diagonal matrix as indicator. So you could select those points manually, and use plot to plot them as a line:
Xplot = diag(XX);
Yplot = diag(YY);
plot(Xplot,Yplot,'r.-');
The call to diag(XX) will take the diagonal elements of the matrix XX, which is exactly where you'll get the red patches when you use surf with the z data according to eye().
Result:
Also, if you're just trying to do what your example states, then there's no need to use matrices just to take out the diagonal eventually. Here's the same result, using elementwise operations on your input vectors:
datA = 1:10;
datB = 1:10;
X2 = cosd(8*datA).*datB;
Y2 = datA.*log10(datB*3);
Z2 = cosd(datB);
XX2 = X2./(1+Z2);
YY2 = Y2./(1+Z2);
plot(Xplot,Yplot,'rs-',XX2,YY2,'bo--','linewidth',2,'markersize',10);
legend('original','vector')
Result:
Matlab has many built-in function to assist you.
In 2D the easiest way to do this is polar that allows you to make a graph using theta and rho vectors:
theta = linspace(0,2*pi,100);
r = sin(2*theta);
figure(1)
polar(theta, r), grid on
So, you would get this.
There also is pol2cart function that would convert your data into x and y format:
[x,y] = pol2cart(theta,r);
figure(2)
plot(x, y), grid on
This would look slightly different
Then, if we extend this to 3D, you are only left with plot3. So, If you have data like:
theta = linspace(0,10*pi,500);
r = ones(size(theta));
z = linspace(-10,10,500);
you need to use pol2cart with 3 arguments to produce this:
[x,y,z] = pol2cart(theta,r,z);
figure(3)
plot3(x,y,z),grid on
Finally, if you have spherical data, you have sph2cart:
theta = linspace(0,2*pi,100);
phi = linspace(-pi/2,pi/2,100);
rho = sin(2*theta - phi);
[x,y,z] = sph2cart(theta, phi, rho);
figure(4)
plot3(x,y,z),grid on
view([-150 70])
That would look this way

Symbolic gradient differing wildly from analytic gradient

I am trying to simulate a network of mobile robots that uses artificial potential fields for movement planning to a shared destination xd. This is done by generating a series of m-files (one for each robot) from a symbolic expression, as this seems to be the best way in terms of computational time and accuracy. However, I can't figure out what is going wrong with my gradient computation: the analytical gradient that is being computed seems to be faulty, while the numerical gradient is calculated correctly (see the image posted below). I have written a MWE listed below, which also exhibits this problem. I have checked the file generating part of the code, and it does return a correct function file with a correct gradient. But I can't figure out why the analytic and numerical gradient are so different.
(A larger version of the image below can be found here)
% create symbolic variables
xd = sym('xd',[1 2]);
x = sym('x',[2 2]);
% create a potential function and a gradient function for both (x,y) pairs
% in x
for i=1:size(x,1)
phi = norm(x(i,:)-xd)/norm(x(1,:)-x(2,:)); % potential field function
xvector = reshape(x.',1,size(x,1)*size(x,2)); % reshape x to allow for gradient computation
grad = gradient(phi,xvector(2*i-1:2*i)); % compute the gradient
gradx = grad(1);grady=grad(2); % split the gradient in two components
% create function file names
gradfun = strcat('GradTester',int2str(i),'.m');
phifun = strcat('PotTester',int2str(i),'.m');
% generate two output files
matlabFunction(gradx, grady,'file',gradfun,'outputs',{'gradx','grady'},'vars',{xvector, xd});
matlabFunction(phi,'file',phifun,'vars',{xvector, xd});
end
clear all % make sure the workspace is empty: the functions are in the files
pause(0.1) % ensure the function file has been generated before it is called
% these are later overwritten by a specific case, but they can be used for
% debugging
x = 0.5*rand(2);
xd = 0.5*rand(1,2);
% values for the Stackoverflow case
x = [0.0533 0.0023;
0.4809 0.3875];
xd = [0.4087 0.4343];
xp = x; % dummy variable to keep x intact
% compute potential field and gradient for both (x,y) pairs
for i=1:size(x,1)
% create a grid centered on the selected (x,y) pair
xGrid = (x(i,1)-0.1):0.005:(x(i,1)+0.1);
yGrid = (x(i,2)-0.1):0.005:(x(i,2)+0.1);
% preallocate the gradient and potential matrices
gradx = zeros(length(xGrid),length(yGrid));
grady = zeros(length(xGrid),length(yGrid));
phi = zeros(length(xGrid),length(yGrid));
% generate appropriate function handles
fun = str2func(strcat('GradTester',int2str(i)));
fun2 = str2func(strcat('PotTester',int2str(i)));
% compute analytic gradient and potential for each position in the xGrid and
% yGrid vectors
for ii = 1:length(yGrid)
for jj = 1:length(xGrid)
xp(i,:) = [xGrid(ii) yGrid(jj)]; % select the position
Xvec = reshape(xp.',1,size(x,1)*size(x,2)); % turn the input into a vector
[gradx(ii,jj),grady(ii,jj)] = fun(Xvec,xd); % compute gradients
phi(jj,ii) = fun2(Xvec,xd); % compute potential value
end
end
[FX,FY] = gradient(phi); % compute the NUMERICAL gradient for comparison
%scale the numerical gradient
FX = FX/0.005;
FY = FY/0.005;
% plot analytic result
subplot(2,2,2*i-1)
hold all
xlim([xGrid(1) xGrid(end)]);
ylim([yGrid(1) yGrid(end)]);
quiver(xGrid,yGrid,-gradx,-grady)
contour(xGrid,yGrid,phi)
title(strcat('Analytic result for position ',int2str(i)));
xlabel('x');
ylabel('y');
subplot(2,2,2*i)
hold all
xlim([xGrid(1) xGrid(end)]);
ylim([yGrid(1) yGrid(end)]);
quiver(xGrid,yGrid,-FX,-FY)
contour(xGrid,yGrid,phi)
title(strcat('Numerical result for position ',int2str(i)));
xlabel('x');
ylabel('y');
end
The potential field I am trying to generate is defined by an (x,y) position, in my code called xd. x is the position matrix of dimension N x 2, where the first column represents x1, x2, and so on, and the second column represents y1, y2, and so on. Xvec is simply a reshaping of this vector to x1,y1,x2,y2,x3,y3 and so on, as the matlabfunction I am generating only accepts vector inputs.
The gradient for robot i is being calculated by taking the derivative w.r.t. x_i and y_i, these two components together yield a single derivative 'vector' shown in the quiver plots. The derivative should look like this, and I checked that the symbolic expression for [gradx,grady] indeed looks like that before an m-file is generated.
To fix the particular problem given in the question, you were actually calculating phi in such a way that meant you doing gradient(phi) was not giving the correct results compared to the symbolic gradient. I'll try and explain. Here is how you created xGrid and yGrid:
% create a grid centered on the selected (x,y) pair
xGrid = (x(i,1)-0.1):0.005:(x(i,1)+0.1);
yGrid = (x(i,2)-0.1):0.005:(x(i,2)+0.1);
But then in the for loop, ii and jj were used like phi(jj,ii) or gradx(ii,jj), but corresponding to the same physical position. This is why your results were different. Another problem you had was you used gradient incorrectly. Matlab assumes that [FX,FY]=gradient(phi) means that phi is calculated from phi=f(x,y) where x and y are matrices created using meshgrid. You effectively had the elements of phi arranged differently to that, an so gradient(phi) gave the wrong answer. Between reversing the jj and ii, and the incorrect gradient, the errors cancelled out (I suspect you tried doing phi(jj,ii) after trying phi(ii,jj) first and finding it didn't work).
Anyway, to sort it all out, on the line after you create xGrid and yGrid, put this in:
[X,Y]=meshgrid(xGrid,yGrid);
Then change the code after you load fun and fun2 to:
for ii = 1:length(xGrid) %// x loop
for jj = 1:length(yGrid) %// y loop
xp(i,:) = [X(ii,jj);Y(ii,jj)]; %// using X and Y not xGrid and yGrid
Xvec = reshape(xp.',1,size(x,1)*size(x,2));
[gradx(ii,jj),grady(ii,jj)] = fun(Xvec,xd);
phi(ii,jj) = fun2(Xvec,xd);
end
end
[FX,FY] = gradient(phi,0.005); %// use the second argument of gradient to set spacing
subplot(2,2,2*i-1)
hold all
axis([min(X(:)) max(X(:)) min(Y(:)) max(Y(:))]) %// use axis rather than xlim/ylim
quiver(X,Y,gradx,grady)
contour(X,Y,phi)
title(strcat('Analytic result for position ',int2str(i)));
xlabel('x');
ylabel('y');
subplot(2,2,2*i)
hold all
axis([min(X(:)) max(X(:)) min(Y(:)) max(Y(:))])
quiver(X,Y,FX,FY)
contour(X,Y,phi)
title(strcat('Numerical result for position ',int2str(i)));
xlabel('x');
ylabel('y');
I have some other comments about your code. I think your potential function is ill-defined, which is causing all sorts of problems. You say in the question that x is an Nx2 matrix, but you potential function is defined as
norm(x(i,:)-xd)/norm(x(1,:)-x(2,:));
which means if N was three, you'd have the following three potentials:
norm(x(1,:)-xd)/norm(x(1,:)-x(2,:));
norm(x(2,:)-xd)/norm(x(1,:)-x(2,:));
norm(x(3,:)-xd)/norm(x(1,:)-x(2,:));
and I don't think the third one makes sense. I think this could be causing some confusion with the gradients.
Also, I'm not sure if there is a reason to create the .m file functions in your real code, but they are not necessary for the code you posted.

MATLAB: 3d reconstruction using eight point algorithm

I am trying to achieve 3d reconstruction from 2 images. Steps I followed are,
1. Found corresponding points between 2 images using SURF.
2. Implemented eight point algo to find "Fundamental matrix"
3. Then, I implemented triangulation.
I have got Fundamental matrix and results of triangulation till now. How do i proceed further to get 3d reconstruction? I'm confused reading all the material available on internet.
Also, This is code. Let me know if this is correct or not.
Ia=imread('1.jpg');
Ib=imread('2.jpg');
Ia=rgb2gray(Ia);
Ib=rgb2gray(Ib);
% My surf addition
% collect Interest Points from Each Image
blobs1 = detectSURFFeatures(Ia);
blobs2 = detectSURFFeatures(Ib);
figure;
imshow(Ia);
hold on;
plot(selectStrongest(blobs1, 36));
figure;
imshow(Ib);
hold on;
plot(selectStrongest(blobs2, 36));
title('Thirty strongest SURF features in I2');
[features1, validBlobs1] = extractFeatures(Ia, blobs1);
[features2, validBlobs2] = extractFeatures(Ib, blobs2);
indexPairs = matchFeatures(features1, features2);
matchedPoints1 = validBlobs1(indexPairs(:,1),:);
matchedPoints2 = validBlobs2(indexPairs(:,2),:);
figure;
showMatchedFeatures(Ia, Ib, matchedPoints1, matchedPoints2);
legend('Putatively matched points in I1', 'Putatively matched points in I2');
for i=1:matchedPoints1.Count
xa(i,:)=matchedPoints1.Location(i);
ya(i,:)=matchedPoints1.Location(i,2);
xb(i,:)=matchedPoints2.Location(i);
yb(i,:)=matchedPoints2.Location(i,2);
end
matchedPoints1.Count
figure(1) ; clf ;
imshow(cat(2, Ia, Ib)) ;
axis image off ;
hold on ;
xbb=xb+size(Ia,2);
set=[1:matchedPoints1.Count];
h = line([xa(set)' ; xbb(set)'], [ya(set)' ; yb(set)']) ;
pts1=[xa,ya];
pts2=[xb,yb];
pts11=pts1;pts11(:,3)=1;
pts11=pts11';
pts22=pts2;pts22(:,3)=1;pts22=pts22';
width=size(Ia,2);
height=size(Ib,1);
F=eightpoint(pts1,pts2,width,height);
[P1new,P2new]=compute2Pmatrix(F);
XP = triangulate(pts11, pts22,P2new);
eightpoint()
function [ F ] = eightpoint( pts1, pts2,width,height)
X = 1:width;
Y = 1:height;
[X, Y] = meshgrid(X, Y);
x0 = [mean(X(:)); mean(Y(:))];
X = X - x0(1);
Y = Y - x0(2);
denom = sqrt(mean(mean(X.^2+Y.^2)));
N = size(pts1, 1);
%Normalized data
T = sqrt(2)/denom*[1 0 -x0(1); 0 1 -x0(2); 0 0 denom/sqrt(2)];
norm_x = T*[pts1(:,1)'; pts1(:,2)'; ones(1, N)];
norm_x_ = T*[pts2(:,1)';pts2(:,2)'; ones(1, N)];
x1 = norm_x(1, :)';
y1= norm_x(2, :)';
x2 = norm_x_(1, :)';
y2 = norm_x_(2, :)';
A = [x1.*x2, y1.*x2, x2, ...
x1.*y2, y1.*y2, y2, ...
x1, y1, ones(N,1)];
% compute the SVD
[~, ~, V] = svd(A);
F = reshape(V(:,9), 3, 3)';
[FU, FS, FV] = svd(F);
FS(3,3) = 0; %rank 2 constrains
F = FU*FS*FV';
% rescale fundamental matrix
F = T' * F * T;
end
triangulate()
function [ XP ] = triangulate( pts1,pts2,P2 )
n=size(pts1,2);
X=zeros(4,n);
for i=1:n
A=[-1,0,pts1(1,i),0;
0,-1,pts1(2,i),0;
pts2(1,i)*P2(3,:)-P2(1,:);
pts2(2,i)*P2(3,:)-P2(2,:)];
[~,~,va] = svd(A);
X(:,i) = va(:,4);
end
XP(:,:,1) = [X(1,:)./X(4,:);X(2,:)./X(4,:);X(3,:)./X(4,:); X(4,:)./X(4,:)];
end
function [ P1,P2 ] = compute2Pmatrix( F )
P1=[1,0,0,0;0,1,0,0;0,0,1,0];
[~, ~, V] = svd(F');
ep = V(:,3)/V(3,3);
P2 = [skew(ep)*F,ep];
end
From a quick look, it looks correct. Some notes are as follows:
You normalized code in eightpoint() is no ideal.
It is best done on the points involved. Each set of points will have its scaling matrix. That is:
[pts1_n, T1] = normalize_pts(pts1);
[pts2_n, T2] = normalize-pts(pts2);
% ... code
% solution
F = T2' * F * T
As a side note (for efficiency) you should do
[~,~,V] = svd(A, 0);
You also want to enforce the constraint that the fundamental matrix has rank-2. After you compute F, you can do:
[U,D,v] = svd(F);
F = U * diag([D(1,1),D(2,2), 0]) * V';
In either case, normalization is not the only key to make the algorithm work. You'll want to wrap the estimation of the fundamental matrix in a robust estimation scheme like RANSAC.
Estimation problems like this are very sensitive to non Gaussian noise and outliers. If you have a small number of wrong correspondence, or points with high error, the algorithm will break.
Finally, In 'triangulate' you want to make sure that the points are not at infinity prior to the homogeneous division.
I'd recommend testing the code with 'synthetic' data. That is, generate your own camera matrices and correspondences. Feed them to the estimate routine with varying levels of noise. With zero noise, you should get an exact solution up to floating point accuracy. As you increase the noise, your estimation error increases.
In its current form, running this on real data will probably not do well unless you 'robustify' the algorithm with RANSAC, or some other robust estimator.
Good luck.
Good luck.
Which version of MATLAB do you have?
There is a function called estimateFundamentalMatrix in the Computer Vision System Toolbox, which will give you the fundamental matrix. It may give you better results than your code, because it is using RANSAC under the hood, which makes it robust to spurious matches. There is also a triangulate function, as of version R2014b.
What you are getting is sparse 3D reconstruction. You can plot the resulting 3D points, and you can map the color of the corresponding pixel to each one. However, for what you want, you would have to fit a surface or a triangular mesh to the points. Unfortunately, I can't help you there.
If what you're asking is how to I proceed from fundamental Matrix + corresponding points to a dense model then you still have a lot of work ahead of you.
relative camera locations (R,T) can be calculated from a fundamental matrix assuming you know the internal camera params (up to scale, rotation, translation). To get a full dense matrix there are a few ways to go. you can try using an existing library (PMVS for example). I'd look into OpenMVG but I'm not sure about matlab interface.
Another way to go, you can compute a dense optical flow (many available for matlab). Look for a epipolar OF (It takes a fundamental matrix and restricts the solution to lie on the epipolar lines). Then you can triangulate every pixel to get a depthmap.
Finally you will have to play with format conversions to get from a depthmap to VRML (You can look at meshlab)
Sorry my answer isn't more Matlab oriented.

Sequential connecting points in 2D in Matlab

I was wondering if you could advise me how I can connect several points together exactly one after each other.
Assume:
data =
x y
------------------
591.2990 532.5188
597.8405 558.6672
600.0210 542.3244
606.5624 566.2938
612.0136 546.6825
616.3746 570.6519
617.4648 580.4575
619.6453 600.0688
629.4575 557.5777
630.5477 584.8156
630.5477 618.5906
639.2696 604.4269
643.6306 638.2019
646.9013 620.7697
652.3525 601.1584
"data" is coordinate of points.
Now, I would like to connect(plot) first point(1st array) to second point, second point to third point and so on.
Please mind that plot(data(:,1),data(:,2)) will give me the same result. However, I am looking for a loop which connect (plot) each pair of point per each loop.
For example:
data1=data;
figure
scatter(X,Y,'.')
hold on
for i=1:size(data,1)
[Liaa,Locbb] = ismember(data(i,:),data1,'rows');
data1(Locbb,:)=[];
[n,d] = knnsearch(data1,data(i,:),'k',1);
x=[data(i,1) data1(n,1)];
y=[data(i,2) data1(n,2)];
plot(x,y);
end
hold off
Although, the proposed loop looks fine, I want a kind of plot which each point connect to maximum 2 other points (as I said like plot(x,y))
Any help would be greatly appreciated!
Thanks for all of your helps, finally a solution is found:
n=1;
pt1=[data(n,1), data(n,2)];
figure
scatter(data(:,1),data(:,2))
hold on
for i=1:size(data,1)
if isempty(pt1)~=1
[Liaa,Locbb] = ismember(pt1(:)',data,'rows');
if Locbb~=0
data(Locbb,:)=[];
[n,d] = knnsearch(data,pt1(:)','k',1);
x=[pt1(1,1) data(n,1)];
y=[pt1(1,2) data(n,2)];
pt1=[data(n,1), data(n,2)];
plot(x,y);
end
end
end
hold off
BTW it is possible to delete the last longest line as it is not related to the question, if someone need it please let me know.
You don't need to use a loop at all. You can use interp1. Specify your x and y data points as control points. After, you can specify a finer set of points from the first x value to the last x value. You can specify a linear spline as this is what you want to accomplish if the behaviour you want is the same as plot. Assuming that data is a 2D matrix as you have shown above, without further ado:
%// Get the minimum and maximum x-values
xMin = min(data(:,1));
xMax = max(data(:,1));
N = 3000; % // Specify total number of points
%// Create an array of N points that linearly span from xMin to xMax
%// Make N larger for finer resolution
xPoints = linspace(xMin, xMax, N);
%//Use the data matrix as control points, then xPoints are the values
%//along the x-axis that will help us draw our lines. yPoints will be
%//the output on the y-axis
yPoints = interp1(data(:,1), data(:,2), xPoints, 'linear');
%// Plot the control points as well as the interpolated points
plot(data(:,1), data(:,2), 'rx', 'MarkerSize', 12);
hold on;
plot(xPoints, yPoints, 'b.');
Warning: You have two x values that map to 630.5477 but produce different y values. If you use interp1, this will give you an error, which is why I had to slightly perturb one of the values by a small amount to get this to work. This should hopefully not be the case when you start using your own data. This is the plot I get:
You'll see that there is a huge gap between those two points I talked about. This is the only limitation to interp1 as it assumes that the x values are strictly monotonically increasing. As such, you can't have the same two points in your set of x values.

How to make a MATLAB plot interactive?

I'm trying to create a simple interface for plotting quadratic Lagrange polynomials. For this, you need just 3 points (with each their own x,y,z coordinates), which are then interpolated using the quadratic Lagrange polynomials.
It's easy to make a static version, or even one that lets the user input the 3 points before plotting the curve. But it should also be possible for the user to drag an existing point in the plot window to another position, and then re-plot the curve automatically using the new position of this point!
So in short, the user should be able to drag these black dots to another location. After that (or while dragging), the curve should be updated.
function Interact()
% Interactive stuff here
figure();
hold on;
axis([0 7 0 5])
DrawLagrange([1,1; 3,4; 6,2])
function DrawLagrange(P)
plot(P(:,1), P(:,2), 'ko--', 'MarkerSize', 10, 'MarkerFaceColor', 'k')
t = 0:.1:2;
Lagrange = [.5*t.^2 - 1.5*t + 1; -t.^2 + 2*t; .5*t.^2 - .5*t];
CurveX = P(1,1)*Lagrange(1,:) + P(2,1)*Lagrange(2,:) + P(3,1)*Lagrange(3,:);
CurveY = P(1,2)*Lagrange(1,:) + P(2,2)*Lagrange(2,:) + P(3,2)*Lagrange(3,:);
plot(CurveX, CurveY);
I think I either have to use functions like WindowButtonDownFcn, WindowButtonUpFcn and WindowButtonMotionFcn, or the ImPoint from the Image Processing Toolbox. But how?
[Edit]
It should also work in 3D, since I'd like to generalize this concept to tensor product surfaces.
Ok, I searched for some more information on the ImPoint option from the Image Processing Toolbox, and wrote this script.
Since ImPoint only works for a 2D setting (and I'd like to generalize this to 3D to be able to work with surfaces instead of curves), it is not really an acceptable answer! But somebody might benefit from it, or get an idea how to do this in 3D.
% -------------------------------------------------
% This file needs the Image Processing Toolbox!
% -------------------------------------------------
function Interact(Pos)
% This part is executed when you run it for the first time.
% In that case, the number of input arguments (nargin) == 0.
if nargin == 0
close all;
clear all;
clc;
figure();
hold on;
axis([0 7 0 5])
% I do not know how to do this without global variables?
global P0 P1 P2
% GCA = Get handle for Current Axis
P0 = ImPoint(gca,1,1);
setString(P0,'P0');
P1 = ImPoint(gca,2,4);
setString(P1,'P1');
P2 = ImPoint(gca,6,2);
setString(P2,'P2');
% Call subfunction
DrawLagrange(P0,P1,P2)
% Add callback to each point
addNewPositionCallback(P0,#Interact);
addNewPositionCallback(P1,#Interact);
addNewPositionCallback(P2,#Interact);
else
% If there _is_ some input argument, it has to be the updated
% position of a moved point.
global H1 H2 P0 P1 P2
% Display X and Y coordinates of moved point
Pos
% Important: remove old plots! Otherwise the graph will get messy.
delete(H1)
delete(H2)
DrawLagrange(P0,P1,P2)
end
function DrawLagrange(P0,P1,P2)
P = zeros(3,2);
% Get X and Y coordinates for the 3 points.
P(1,:) = getPosition(P0);
P(2,:) = getPosition(P1);
P(3,:) = getPosition(P2);
global H1 H2
H1 = plot(P(:,1), P(:,2), 'ko--', 'MarkerSize', 12);
t = 0:.1:2;
Lagrange = [.5*t.^2 - 1.5*t + 1; -t.^2 + 2*t; .5*t.^2 - .5*t];
CurveX = P(1,1)*Lagrange(1,:) + P(2,1)*Lagrange(2,:) + P(3,1)*Lagrange(3,:);
CurveY = P(1,2)*Lagrange(1,:) + P(2,2)*Lagrange(2,:) + P(3,2)*Lagrange(3,:);
H2 = plot(CurveX, CurveY);
I added some comments for clarity.
[Edit] In the preview the syntax highlighting doesn't look very good! Should I define the language to be highlighted somewhere?
A better solution (one that does not need any additional toolboxes) is to use events. First step:
H = figure('NumberTitle', 'off');
set(H, 'Renderer', 'OpenGL');
set(H, 'WindowButtonDownFcn', #MouseClick);
set(H, 'WindowButtonMotionFcn', #MouseMove);
set(H, 'WindowScrollWheelFcn', #MouseScroll);
set(H, 'KeyPressFcn', #KeyPress )
The next step is to define the functions like MouseClick, this is the place where you implement how to react to events (e.g. mouse buttons being clicked, keys being pressed).
In the meantime I implemented an interactive B-spline environment in MATLAB, the source code (along with a concise manual) can be downloaded from https://github.com/pjbarendrecht/BsplineLab.
Great question! I've had this problem too and wondered how to solve it before, but never looked into it. My first thought was to use ginput and then minimize the distance to the line and find the closest point. I thought that was a bit of a hack so I looked around. Seems like that's the only reasonable answer out there and was confirmed here with this code as an example.
%minimum absolute differences kick in again
xx = 1:10; %xdata
yy = exp(xx);
plot(xx,yy);
[xm ym] = ginput(1); %xmouse, ymouse
%Engine
[~, xidx] = min(abs(xx-xm)); %closest index
[~, yidx] = min(abs(yy-ym));
x_closest = xx(xidx) %extract
y_closest = yy(yidx)
Not sure how it scales to 3D, but I thought this would be a good start.