Related
I need to create a single dataframe for each dataframe row.
The following code will create a single csv with Dataframe information
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.SparkConf
import java.sql.Timestamp
import org.apache.spark.sql._
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType, LongType, DoubleType};
import org.apache.spark.sql.functions._
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
var myDF = sqlContext.sql("select a, b, c from my_table")
val filename = "/tmp/myCSV.csv";
myDF.repartition(1).write.option("header", "true").option("compression", "none").option("timestampFormat", "yyyy-MM-dd'T'HH:mm:ss.SSS").csv(filename)
I'd like to create a single CSV for each row
scala> val myDF = sqlContext.sql("select a, b, c from my_table")
scala> val c = myDF.cache.count //Let say total 100 records
scala> val newDF = myDF.repartition(c.toInt)
scala> newDF.rdd.getNumPartitions
res34: Int = 100
scala> newDF.write.format("csv").option("header","true").save(<path to write>)
Suppose I have a dataframe such as the following:
import org.apache.spark.sql.{Row, DataFrame, SparkSession}
import org.apache.spark.sql.types.{StructType, StructField, IntegerType, StringType, DoubleType, NumericType}
import org.apache.spark.sql.functions.{udf, col, skewness}
val someData = Seq(
Row(8, "bat"),
Row(64, "mouse"),
Row(-27, "horse"),
Row(null, "mouse"),
Row(27, null)
)
val someSchema = List(
StructField("number", IntegerType, true),
StructField("word", StringType, true)
)
val someDF = spark.createDataFrame(
spark.sparkContext.parallelize(someData),
StructType(someSchema)
)
val df = someDF.withColumn("constantColumn", lit(1))
I would like to calculate the skewness of each column having a NumericType-like type. Then, if a column's skewness is above a certain threshold, I would like to transform it via f(x) = log(x + 1). (I know that performing log-transforms on negative data will give a NaN, but I would like to eventually write code that will take this possibility into account).
What I have tried so far:
I have found a way to do it, but it requires a mutable dataframe df. From my limited understanding, this is not desirable.
val log1p = scala.math.log1p(_)
val log1pUDF = udf(scala.math.log1p(_: Double))
val transformThreshold = 0.04
// filter those columns which have a type that inherits from NumericType
val numericColumns = df.columns.filter(column => df.select(column).schema(0).dataType.isInstanceOf[NumericType])
// for columns having NumericType, filter those that are sufficiently skewed
val columnsToTransform = numericColumns.filter(numericColumn => df.select(skewness(df(numericColumn))).head.getDouble(0) > transformThreshold)
// for all columns that are sufficiently skewed, perform log1p transform and add it to df
for(column <- columnsToTransform) {
// df should be mutable here!
df = df.withColumn(column + "_log1p", log1pUDF(df(column)))
}
My questions:
How can I achieve the goal without using mutable dataframes?
Is there an easier/quicker way to achieve what I have tried to do?
(Run on Spark 2.4.0, Scala 2.11.12.)
Instead of for() structure, you could use a recursive function :
def rec(df: DataFrame, columns: List[String]): DataFrame = columns match {
case Nil => df
case h :: xs => rec(df.withColumn(s"${h}_log1p", log1pUDF(col(h))), xs)
}
How can I convert an RDD (org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]) to a Dataframe org.apache.spark.sql.DataFrame. I converted a dataframe to rdd using .rdd. After processing it I want it back in dataframe. How can I do this ?
This code works perfectly from Spark 2.x with Scala 2.11
Import necessary classes
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
Create SparkSession Object, and Here it's spark
val spark: SparkSession = SparkSession.builder.master("local").getOrCreate
val sc = spark.sparkContext // Just used to create test RDDs
Let's an RDD to make it DataFrame
val rdd = sc.parallelize(
Seq(
("first", Array(2.0, 1.0, 2.1, 5.4)),
("test", Array(1.5, 0.5, 0.9, 3.7)),
("choose", Array(8.0, 2.9, 9.1, 2.5))
)
)
##Method 1
Using SparkSession.createDataFrame(RDD obj).
val dfWithoutSchema = spark.createDataFrame(rdd)
dfWithoutSchema.show()
+------+--------------------+
| _1| _2|
+------+--------------------+
| first|[2.0, 1.0, 2.1, 5.4]|
| test|[1.5, 0.5, 0.9, 3.7]|
|choose|[8.0, 2.9, 9.1, 2.5]|
+------+--------------------+
##Method 2
Using SparkSession.createDataFrame(RDD obj) and specifying column names.
val dfWithSchema = spark.createDataFrame(rdd).toDF("id", "vals")
dfWithSchema.show()
+------+--------------------+
| id| vals|
+------+--------------------+
| first|[2.0, 1.0, 2.1, 5.4]|
| test|[1.5, 0.5, 0.9, 3.7]|
|choose|[8.0, 2.9, 9.1, 2.5]|
+------+--------------------+
##Method 3 (Actual answer to the question)
This way requires the input rdd should be of type RDD[Row].
val rowsRdd: RDD[Row] = sc.parallelize(
Seq(
Row("first", 2.0, 7.0),
Row("second", 3.5, 2.5),
Row("third", 7.0, 5.9)
)
)
create the schema
val schema = new StructType()
.add(StructField("id", StringType, true))
.add(StructField("val1", DoubleType, true))
.add(StructField("val2", DoubleType, true))
Now apply both rowsRdd and schema to createDataFrame()
val df = spark.createDataFrame(rowsRdd, schema)
df.show()
+------+----+----+
| id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+
SparkSession has a number of createDataFrame methods that create a DataFrame given an RDD. I imagine one of these will work for your context.
For example:
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
Creates a DataFrame from an RDD containing Rows using the given
schema.
Assuming your RDD[row] is called rdd, you can use:
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
rdd.toDF()
Note: This answer was originally posted here
I am posting this answer because I would like to share additional details about the available options that I did not find in the other answers
To create a DataFrame from an RDD of Rows, there are two main options:
1) As already pointed out, you could use toDF() which can be imported by import sqlContext.implicits._. However, this approach only works for the following types of RDDs:
RDD[Int]
RDD[Long]
RDD[String]
RDD[T <: scala.Product]
(source: Scaladoc of the SQLContext.implicits object)
The last signature actually means that it can work for an RDD of tuples or an RDD of case classes (because tuples and case classes are subclasses of scala.Product).
So, to use this approach for an RDD[Row], you have to map it to an RDD[T <: scala.Product]. This can be done by mapping each row to a custom case class or to a tuple, as in the following code snippets:
val df = rdd.map({
case Row(val1: String, ..., valN: Long) => (val1, ..., valN)
}).toDF("col1_name", ..., "colN_name")
or
case class MyClass(val1: String, ..., valN: Long = 0L)
val df = rdd.map({
case Row(val1: String, ..., valN: Long) => MyClass(val1, ..., valN)
}).toDF("col1_name", ..., "colN_name")
The main drawback of this approach (in my opinion) is that you have to explicitly set the schema of the resulting DataFrame in the map function, column by column. Maybe this can be done programatically if you don't know the schema in advance, but things can get a little messy there. So, alternatively, there is another option:
2) You can use createDataFrame(rowRDD: RDD[Row], schema: StructType) as in the accepted answer, which is available in the SQLContext object. Example for converting an RDD of an old DataFrame:
val rdd = oldDF.rdd
val newDF = oldDF.sqlContext.createDataFrame(rdd, oldDF.schema)
Note that there is no need to explicitly set any schema column. We reuse the old DF's schema, which is of StructType class and can be easily extended. However, this approach sometimes is not possible, and in some cases can be less efficient than the first one.
Suppose you have a DataFrame and you want to do some modification on the fields data by converting it to RDD[Row].
val aRdd = aDF.map(x=>Row(x.getAs[Long]("id"),x.getAs[List[String]]("role").head))
To convert back to DataFrame from RDD we need to define the structure type of the RDD.
If the datatype was Long then it will become as LongType in structure.
If String then StringType in structure.
val aStruct = new StructType(Array(StructField("id",LongType,nullable = true),StructField("role",StringType,nullable = true)))
Now you can convert the RDD to DataFrame using the createDataFrame method.
val aNamedDF = sqlContext.createDataFrame(aRdd,aStruct)
Method 1: (Scala)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val df_2 = sc.parallelize(Seq((1L, 3.0, "a"), (2L, -1.0, "b"), (3L, 0.0, "c"))).toDF("x", "y", "z")
Method 2: (Scala)
case class temp(val1: String,val3 : Double)
val rdd = sc.parallelize(Seq(
Row("foo", 0.5), Row("bar", 0.0)
))
val rows = rdd.map({case Row(val1:String,val3:Double) => temp(val1,val3)}).toDF()
rows.show()
Method 1: (Python)
from pyspark.sql import Row
l = [('Alice',2)]
Person = Row('name','age')
rdd = sc.parallelize(l)
person = rdd.map(lambda r:Person(*r))
df2 = sqlContext.createDataFrame(person)
df2.show()
Method 2: (Python)
from pyspark.sql.types import *
l = [('Alice',2)]
rdd = sc.parallelize(l)
schema = StructType([StructField ("name" , StringType(), True) ,
StructField("age" , IntegerType(), True)])
df3 = sqlContext.createDataFrame(rdd, schema)
df3.show()
Extracted the value from the row object and then applied the case class to convert rdd to DF
val temp1 = attrib1.map{case Row ( key: Int ) => s"$key" }
val temp2 = attrib2.map{case Row ( key: Int) => s"$key" }
case class RLT (id: String, attrib_1 : String, attrib_2 : String)
import hiveContext.implicits._
val df = result.map{ s => RLT(s(0),s(1),s(2)) }.toDF
Here is a simple example of converting your List into Spark RDD and then converting that Spark RDD into Dataframe.
Please note that I have used Spark-shell's scala REPL to execute following code, Here sc is an instance of SparkContext which is implicitly available in Spark-shell. Hope it answer your question.
scala> val numList = List(1,2,3,4,5)
numList: List[Int] = List(1, 2, 3, 4, 5)
scala> val numRDD = sc.parallelize(numList)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[80] at parallelize at <console>:28
scala> val numDF = numRDD.toDF
numDF: org.apache.spark.sql.DataFrame = [_1: int]
scala> numDF.show
+---+
| _1|
+---+
| 1|
| 2|
| 3|
| 4|
| 5|
+---+
On newer versions of spark (2.0+)
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val spark = SparkSession
.builder()
.getOrCreate()
import spark.implicits._
val dfSchema = Seq("col1", "col2", "col3")
rdd.toDF(dfSchema: _*)
One needs to create a schema, and attach it to the Rdd.
Assuming val spark is a product of a SparkSession.builder...
import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
/* Lets gin up some sample data:
* As RDD's and dataframes can have columns of differing types, lets make our
* sample data a three wide, two tall, rectangle of mixed types.
* A column of Strings, a column of Longs, and a column of Doubules
*/
val arrayOfArrayOfAnys = Array.ofDim[Any](2,3)
arrayOfArrayOfAnys(0)(0)="aString"
arrayOfArrayOfAnys(0)(1)=0L
arrayOfArrayOfAnys(0)(2)=3.14159
arrayOfArrayOfAnys(1)(0)="bString"
arrayOfArrayOfAnys(1)(1)=9876543210L
arrayOfArrayOfAnys(1)(2)=2.71828
/* The way to convert an anything which looks rectangular,
* (Array[Array[String]] or Array[Array[Any]] or Array[Row], ... ) into an RDD is to
* throw it into sparkContext.parallelize.
* http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext shows
* the parallelize definition as
* def parallelize[T](seq: Seq[T], numSlices: Int = defaultParallelism)
* so in our case our ArrayOfArrayOfAnys is treated as a sequence of ArraysOfAnys.
* Will leave the numSlices as the defaultParallelism, as I have no particular cause to change it.
*/
val rddOfArrayOfArrayOfAnys=spark.sparkContext.parallelize(arrayOfArrayOfAnys)
/* We'll be using the sqlContext.createDataFrame to add a schema our RDD.
* The RDD which goes into createDataFrame is an RDD[Row] which is not what we happen to have.
* To convert anything one tall and several wide into a Row, one can use Row.fromSeq(thatThing.toSeq)
* As we have an RDD[somethingWeDontWant], we can map each of the RDD rows into the desired Row type.
*/
val rddOfRows=rddOfArrayOfArrayOfAnys.map(f=>
Row.fromSeq(f.toSeq)
)
/* Now to construct our schema. This needs to be a StructType of 1 StructField per column in our dataframe.
* https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.types.StructField shows the definition as
* case class StructField(name: String, dataType: DataType, nullable: Boolean = true, metadata: Metadata = Metadata.empty)
* Will leave the two default values in place for each of the columns:
* nullability as true,
* metadata as an empty Map[String,Any]
*
*/
val schema = StructType(
StructField("colOfStrings", StringType) ::
StructField("colOfLongs" , LongType ) ::
StructField("colOfDoubles", DoubleType) ::
Nil
)
val df=spark.sqlContext.createDataFrame(rddOfRows,schema)
/*
* +------------+----------+------------+
* |colOfStrings|colOfLongs|colOfDoubles|
* +------------+----------+------------+
* | aString| 0| 3.14159|
* | bString|9876543210| 2.71828|
* +------------+----------+------------+
*/
df.show
Same steps, but with fewer val declarations:
val arrayOfArrayOfAnys=Array(
Array("aString",0L ,3.14159),
Array("bString",9876543210L,2.71828)
)
val rddOfRows=spark.sparkContext.parallelize(arrayOfArrayOfAnys).map(f=>Row.fromSeq(f.toSeq))
/* If one knows the datatypes, for instance from JDBC queries as to RDBC column metadata:
* Consider constructing the schema from an Array[StructField]. This would allow looping over
* the columns, with a match statement applying the appropriate sql datatypes as the second
* StructField arguments.
*/
val sf=new Array[StructField](3)
sf(0)=StructField("colOfStrings",StringType)
sf(1)=StructField("colOfLongs" ,LongType )
sf(2)=StructField("colOfDoubles",DoubleType)
val df=spark.sqlContext.createDataFrame(rddOfRows,StructType(sf.toList))
df.show
I tried to explain the solution using the word count problem.
1. Read the file using sc
Produce word count
Methods to create DF
rdd.toDF method
rdd.toDF("word","count")
spark.createDataFrame(rdd,schema)
Read file using spark
val rdd=sc.textFile("D://cca175/data/")
Rdd to Dataframe
val df=sc.textFile("D://cca175/data/").toDF("t1")
df.show
Method 1
Create word count RDD to Dataframe
val df=rdd.flatMap(x=>x.split(" ")).map(x=>(x,1)).reduceByKey((x,y)=>(x+y)).toDF("word","count")
Method2
Create Dataframe from Rdd
val df=spark.createDataFrame(wordRdd)
# with header
val df=spark.createDataFrame(wordRdd).toDF("word","count") df.show
Method3
Define Schema
import org.apache.spark.sql.types._
val schema=new StructType().
add(StructField("word",StringType,true)).
add(StructField("count",StringType,true))
Create RowRDD
import org.apache.spark.sql.Row
val rowRdd=wordRdd.map(x=>(Row(x._1,x._2)))
Create DataFrame from RDD with schema
val df=spark.createDataFrame(rowRdd,schema)
df.show
I meet the same problem, and finally solve it. It's quite simple and easy.
You have to add this code import sc.implicits._, sc means SQLContext. add this code you will get rdd.toDF() method.
Transform your rdd[RawData] to rdd[YourCaseClass]. For example, you have a rdd type like this rdd[(String, Integer, Long)], you can create a Case Class YourCaseClass(name: String, age: Integer, timestamp: Long) and convert raw rdd to rdd with YourCaseClass type, then you get rdd[YourCaseClass]
save rdd[YourCaseClass] to hive table. yourRdd.toDF().write.format("parquet").mode(SaveMode.Overwrite).insertInto(yourHiveTableName) Use case class to represent rdd type, we can avoid naming each column field or StructType related schema.
To convert an Array[Row] to DataFrame or Dataset, the following works elegantly:
Say, schema is the StructType for the row,then
val rows: Array[Row]=...
implicit val encoder = RowEncoder.apply(schema)
import spark.implicits._
rows.toDS
Context:
I have a data frame with two columns: label, and features.
org.apache.spark.sql.DataFrame = [label: int, features: vector]
Where features is a mllib.linalg.VectorUDT of numeric type built using VectorAssembler.
Question:
Is there a way to assign a schema to the features vector? I want to keep track of the name of each feature.
Tried so far:
val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("feat1", "feat2", "feat3").map(defaultAttr.withName)
val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
scala> attrGroup.toMetadata
res197: org.apache.spark.sql.types.Metadata = {"ml_attr":{"attrs":{"numeric":[{"idx":0,"name":"f1"},{"idx":1,"name":"f2"},{"idx":2,"name":"f3"}]},"num_attrs":3}}
But was not sure how to apply this to an existing data frame.
There at lest two options:
On existing DataFrame you can use as method with metadata argument:
import org.apache.spark.ml.attribute._
val rdd = sc.parallelize(Seq(
(1, Vectors.dense(1.0, 2.0, 3.0))
))
val df = rdd.toDF("label", "features")
df.withColumn("features", $"features".as("_", attrGroup.toMetadata))
When you create new DataFrame convert AttributeGroup toStructField and use it as a schema for a given column:
import org.apache.spark.sql.types.{StructType, StructField, IntegerType}
val schema = StructType(Array(
StructField("label", IntegerType, false),
attrGroup.toStructField()
))
spark.createDataFrame(
rdd.map(row => Row.fromSeq(row.productIterator.toSeq)),
schema)
If vector column has been created using VectorAssembler column metadata describing parent columns should be already attached.
import org.apache.spark.ml.feature.VectorAssembler
val raw = sc.parallelize(Seq(
(1, 1.0, 2.0, 3.0)
)).toDF("id", "feat1", "feat2", "feat3")
val assembler = new VectorAssembler()
.setInputCols(Array("feat1", "feat2", "feat3"))
.setOutputCol("features")
val dfWithMeta = assembler.transform(raw).select($"id", $"features")
dfWithMeta.schema.fields(1).metadata
// org.apache.spark.sql.types.Metadata = {"ml_attr":{"attrs":{"numeric":[
// {"idx":0,"name":"feat1"},{"idx":1,"name":"feat2"},
// {"idx":2,"name":"feat3"}]},"num_attrs":3}
Vector fields are not directly accessible using dot syntax (like $features.feat1) but can used by specialized tools like VectorSlicer:
import org.apache.spark.ml.feature.VectorSlicer
val slicer = new VectorSlicer()
.setInputCol("features")
.setOutputCol("featuresSubset")
.setNames(Array("feat1", "feat3"))
slicer.transform(dfWithMeta).show
// +---+-------------+--------------+
// | id| features|featuresSubset|
// +---+-------------+--------------+
// | 1|[1.0,2.0,3.0]| [1.0,3.0]|
// +---+-------------+--------------+
For PySpark see How can I declare a Column as a categorical feature in a DataFrame for use in ml
How can I convert an RDD (org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]) to a Dataframe org.apache.spark.sql.DataFrame. I converted a dataframe to rdd using .rdd. After processing it I want it back in dataframe. How can I do this ?
This code works perfectly from Spark 2.x with Scala 2.11
Import necessary classes
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
Create SparkSession Object, and Here it's spark
val spark: SparkSession = SparkSession.builder.master("local").getOrCreate
val sc = spark.sparkContext // Just used to create test RDDs
Let's an RDD to make it DataFrame
val rdd = sc.parallelize(
Seq(
("first", Array(2.0, 1.0, 2.1, 5.4)),
("test", Array(1.5, 0.5, 0.9, 3.7)),
("choose", Array(8.0, 2.9, 9.1, 2.5))
)
)
##Method 1
Using SparkSession.createDataFrame(RDD obj).
val dfWithoutSchema = spark.createDataFrame(rdd)
dfWithoutSchema.show()
+------+--------------------+
| _1| _2|
+------+--------------------+
| first|[2.0, 1.0, 2.1, 5.4]|
| test|[1.5, 0.5, 0.9, 3.7]|
|choose|[8.0, 2.9, 9.1, 2.5]|
+------+--------------------+
##Method 2
Using SparkSession.createDataFrame(RDD obj) and specifying column names.
val dfWithSchema = spark.createDataFrame(rdd).toDF("id", "vals")
dfWithSchema.show()
+------+--------------------+
| id| vals|
+------+--------------------+
| first|[2.0, 1.0, 2.1, 5.4]|
| test|[1.5, 0.5, 0.9, 3.7]|
|choose|[8.0, 2.9, 9.1, 2.5]|
+------+--------------------+
##Method 3 (Actual answer to the question)
This way requires the input rdd should be of type RDD[Row].
val rowsRdd: RDD[Row] = sc.parallelize(
Seq(
Row("first", 2.0, 7.0),
Row("second", 3.5, 2.5),
Row("third", 7.0, 5.9)
)
)
create the schema
val schema = new StructType()
.add(StructField("id", StringType, true))
.add(StructField("val1", DoubleType, true))
.add(StructField("val2", DoubleType, true))
Now apply both rowsRdd and schema to createDataFrame()
val df = spark.createDataFrame(rowsRdd, schema)
df.show()
+------+----+----+
| id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+
SparkSession has a number of createDataFrame methods that create a DataFrame given an RDD. I imagine one of these will work for your context.
For example:
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
Creates a DataFrame from an RDD containing Rows using the given
schema.
Assuming your RDD[row] is called rdd, you can use:
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
rdd.toDF()
Note: This answer was originally posted here
I am posting this answer because I would like to share additional details about the available options that I did not find in the other answers
To create a DataFrame from an RDD of Rows, there are two main options:
1) As already pointed out, you could use toDF() which can be imported by import sqlContext.implicits._. However, this approach only works for the following types of RDDs:
RDD[Int]
RDD[Long]
RDD[String]
RDD[T <: scala.Product]
(source: Scaladoc of the SQLContext.implicits object)
The last signature actually means that it can work for an RDD of tuples or an RDD of case classes (because tuples and case classes are subclasses of scala.Product).
So, to use this approach for an RDD[Row], you have to map it to an RDD[T <: scala.Product]. This can be done by mapping each row to a custom case class or to a tuple, as in the following code snippets:
val df = rdd.map({
case Row(val1: String, ..., valN: Long) => (val1, ..., valN)
}).toDF("col1_name", ..., "colN_name")
or
case class MyClass(val1: String, ..., valN: Long = 0L)
val df = rdd.map({
case Row(val1: String, ..., valN: Long) => MyClass(val1, ..., valN)
}).toDF("col1_name", ..., "colN_name")
The main drawback of this approach (in my opinion) is that you have to explicitly set the schema of the resulting DataFrame in the map function, column by column. Maybe this can be done programatically if you don't know the schema in advance, but things can get a little messy there. So, alternatively, there is another option:
2) You can use createDataFrame(rowRDD: RDD[Row], schema: StructType) as in the accepted answer, which is available in the SQLContext object. Example for converting an RDD of an old DataFrame:
val rdd = oldDF.rdd
val newDF = oldDF.sqlContext.createDataFrame(rdd, oldDF.schema)
Note that there is no need to explicitly set any schema column. We reuse the old DF's schema, which is of StructType class and can be easily extended. However, this approach sometimes is not possible, and in some cases can be less efficient than the first one.
Suppose you have a DataFrame and you want to do some modification on the fields data by converting it to RDD[Row].
val aRdd = aDF.map(x=>Row(x.getAs[Long]("id"),x.getAs[List[String]]("role").head))
To convert back to DataFrame from RDD we need to define the structure type of the RDD.
If the datatype was Long then it will become as LongType in structure.
If String then StringType in structure.
val aStruct = new StructType(Array(StructField("id",LongType,nullable = true),StructField("role",StringType,nullable = true)))
Now you can convert the RDD to DataFrame using the createDataFrame method.
val aNamedDF = sqlContext.createDataFrame(aRdd,aStruct)
Method 1: (Scala)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val df_2 = sc.parallelize(Seq((1L, 3.0, "a"), (2L, -1.0, "b"), (3L, 0.0, "c"))).toDF("x", "y", "z")
Method 2: (Scala)
case class temp(val1: String,val3 : Double)
val rdd = sc.parallelize(Seq(
Row("foo", 0.5), Row("bar", 0.0)
))
val rows = rdd.map({case Row(val1:String,val3:Double) => temp(val1,val3)}).toDF()
rows.show()
Method 1: (Python)
from pyspark.sql import Row
l = [('Alice',2)]
Person = Row('name','age')
rdd = sc.parallelize(l)
person = rdd.map(lambda r:Person(*r))
df2 = sqlContext.createDataFrame(person)
df2.show()
Method 2: (Python)
from pyspark.sql.types import *
l = [('Alice',2)]
rdd = sc.parallelize(l)
schema = StructType([StructField ("name" , StringType(), True) ,
StructField("age" , IntegerType(), True)])
df3 = sqlContext.createDataFrame(rdd, schema)
df3.show()
Extracted the value from the row object and then applied the case class to convert rdd to DF
val temp1 = attrib1.map{case Row ( key: Int ) => s"$key" }
val temp2 = attrib2.map{case Row ( key: Int) => s"$key" }
case class RLT (id: String, attrib_1 : String, attrib_2 : String)
import hiveContext.implicits._
val df = result.map{ s => RLT(s(0),s(1),s(2)) }.toDF
Here is a simple example of converting your List into Spark RDD and then converting that Spark RDD into Dataframe.
Please note that I have used Spark-shell's scala REPL to execute following code, Here sc is an instance of SparkContext which is implicitly available in Spark-shell. Hope it answer your question.
scala> val numList = List(1,2,3,4,5)
numList: List[Int] = List(1, 2, 3, 4, 5)
scala> val numRDD = sc.parallelize(numList)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[80] at parallelize at <console>:28
scala> val numDF = numRDD.toDF
numDF: org.apache.spark.sql.DataFrame = [_1: int]
scala> numDF.show
+---+
| _1|
+---+
| 1|
| 2|
| 3|
| 4|
| 5|
+---+
On newer versions of spark (2.0+)
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val spark = SparkSession
.builder()
.getOrCreate()
import spark.implicits._
val dfSchema = Seq("col1", "col2", "col3")
rdd.toDF(dfSchema: _*)
One needs to create a schema, and attach it to the Rdd.
Assuming val spark is a product of a SparkSession.builder...
import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
/* Lets gin up some sample data:
* As RDD's and dataframes can have columns of differing types, lets make our
* sample data a three wide, two tall, rectangle of mixed types.
* A column of Strings, a column of Longs, and a column of Doubules
*/
val arrayOfArrayOfAnys = Array.ofDim[Any](2,3)
arrayOfArrayOfAnys(0)(0)="aString"
arrayOfArrayOfAnys(0)(1)=0L
arrayOfArrayOfAnys(0)(2)=3.14159
arrayOfArrayOfAnys(1)(0)="bString"
arrayOfArrayOfAnys(1)(1)=9876543210L
arrayOfArrayOfAnys(1)(2)=2.71828
/* The way to convert an anything which looks rectangular,
* (Array[Array[String]] or Array[Array[Any]] or Array[Row], ... ) into an RDD is to
* throw it into sparkContext.parallelize.
* http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext shows
* the parallelize definition as
* def parallelize[T](seq: Seq[T], numSlices: Int = defaultParallelism)
* so in our case our ArrayOfArrayOfAnys is treated as a sequence of ArraysOfAnys.
* Will leave the numSlices as the defaultParallelism, as I have no particular cause to change it.
*/
val rddOfArrayOfArrayOfAnys=spark.sparkContext.parallelize(arrayOfArrayOfAnys)
/* We'll be using the sqlContext.createDataFrame to add a schema our RDD.
* The RDD which goes into createDataFrame is an RDD[Row] which is not what we happen to have.
* To convert anything one tall and several wide into a Row, one can use Row.fromSeq(thatThing.toSeq)
* As we have an RDD[somethingWeDontWant], we can map each of the RDD rows into the desired Row type.
*/
val rddOfRows=rddOfArrayOfArrayOfAnys.map(f=>
Row.fromSeq(f.toSeq)
)
/* Now to construct our schema. This needs to be a StructType of 1 StructField per column in our dataframe.
* https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.types.StructField shows the definition as
* case class StructField(name: String, dataType: DataType, nullable: Boolean = true, metadata: Metadata = Metadata.empty)
* Will leave the two default values in place for each of the columns:
* nullability as true,
* metadata as an empty Map[String,Any]
*
*/
val schema = StructType(
StructField("colOfStrings", StringType) ::
StructField("colOfLongs" , LongType ) ::
StructField("colOfDoubles", DoubleType) ::
Nil
)
val df=spark.sqlContext.createDataFrame(rddOfRows,schema)
/*
* +------------+----------+------------+
* |colOfStrings|colOfLongs|colOfDoubles|
* +------------+----------+------------+
* | aString| 0| 3.14159|
* | bString|9876543210| 2.71828|
* +------------+----------+------------+
*/
df.show
Same steps, but with fewer val declarations:
val arrayOfArrayOfAnys=Array(
Array("aString",0L ,3.14159),
Array("bString",9876543210L,2.71828)
)
val rddOfRows=spark.sparkContext.parallelize(arrayOfArrayOfAnys).map(f=>Row.fromSeq(f.toSeq))
/* If one knows the datatypes, for instance from JDBC queries as to RDBC column metadata:
* Consider constructing the schema from an Array[StructField]. This would allow looping over
* the columns, with a match statement applying the appropriate sql datatypes as the second
* StructField arguments.
*/
val sf=new Array[StructField](3)
sf(0)=StructField("colOfStrings",StringType)
sf(1)=StructField("colOfLongs" ,LongType )
sf(2)=StructField("colOfDoubles",DoubleType)
val df=spark.sqlContext.createDataFrame(rddOfRows,StructType(sf.toList))
df.show
I tried to explain the solution using the word count problem.
1. Read the file using sc
Produce word count
Methods to create DF
rdd.toDF method
rdd.toDF("word","count")
spark.createDataFrame(rdd,schema)
Read file using spark
val rdd=sc.textFile("D://cca175/data/")
Rdd to Dataframe
val df=sc.textFile("D://cca175/data/").toDF("t1")
df.show
Method 1
Create word count RDD to Dataframe
val df=rdd.flatMap(x=>x.split(" ")).map(x=>(x,1)).reduceByKey((x,y)=>(x+y)).toDF("word","count")
Method2
Create Dataframe from Rdd
val df=spark.createDataFrame(wordRdd)
# with header
val df=spark.createDataFrame(wordRdd).toDF("word","count") df.show
Method3
Define Schema
import org.apache.spark.sql.types._
val schema=new StructType().
add(StructField("word",StringType,true)).
add(StructField("count",StringType,true))
Create RowRDD
import org.apache.spark.sql.Row
val rowRdd=wordRdd.map(x=>(Row(x._1,x._2)))
Create DataFrame from RDD with schema
val df=spark.createDataFrame(rowRdd,schema)
df.show
I meet the same problem, and finally solve it. It's quite simple and easy.
You have to add this code import sc.implicits._, sc means SQLContext. add this code you will get rdd.toDF() method.
Transform your rdd[RawData] to rdd[YourCaseClass]. For example, you have a rdd type like this rdd[(String, Integer, Long)], you can create a Case Class YourCaseClass(name: String, age: Integer, timestamp: Long) and convert raw rdd to rdd with YourCaseClass type, then you get rdd[YourCaseClass]
save rdd[YourCaseClass] to hive table. yourRdd.toDF().write.format("parquet").mode(SaveMode.Overwrite).insertInto(yourHiveTableName) Use case class to represent rdd type, we can avoid naming each column field or StructType related schema.
To convert an Array[Row] to DataFrame or Dataset, the following works elegantly:
Say, schema is the StructType for the row,then
val rows: Array[Row]=...
implicit val encoder = RowEncoder.apply(schema)
import spark.implicits._
rows.toDS