Make a one simple code from several similar code - matlab

Hello everybody I have a very simple problem, I have too many data y, p and r. So I want to calculate it in a single code.
This an example of my code if I breakdown into separate code
y1=45
y2=56
y3=67
p1=34
p2=45
p3=56
r1=23
r2=34
r3=45
Ryaw1=[cosd(y1) -sind(y1) 0;
sind(y1) cosd(y1) 0;
0 0 1]
Rpitch1=[cosd(p1) 0 sind(p1);
0 1 0;
-sind(p1) 0 cos(p1)]
Rroll1=[1 0 0;
0 cosd(r1) -sind(r1);
0 sind(r1) cosd(r1)]
R1=Ryaw1*Rpitch1*Rroll1
Coordinate1=R1*X0
Ryaw2=[cosd(y2) -sind(y2) 0;
sind(y2) cosd(y2) 0;
0 0 1]
Rpitch2=[cosd(p2) 0 sind(p2);
0 1 0;
-sind(p2) 0 cos(p2)]
Rroll2=[1 0 0;
0 cosd(r2) -sind(r2);
0 sind(r2) cosd(r2)]
R2=Ryaw2*Rpitch2*Rroll2
Coordinate2=R2*X0
Ryaw3=[cosd(y3) -sind(y3) 0;
sind(y3) cosd(y3) 0;
0 0 1]
Rpitch3=[cosd(p3) 0 sind(p3);
0 1 0;
-sind(p3) 0 cos(p3)]
Rroll3=[1 0 0;
0 cosd(r3) -sind(r3);
0 sind(r3) cosd(r3)]
R3=Ryaw3*Rpitch3*Rroll3
Coordinate3=R3*X0
Coordinate=[Cooedinate1 Coordinate2 Coordinate3]
The goals is to find "Coordinate" (in matrix - combined from Coordinate1, Coordinate2, Coordinate3, .... ,Coordinate..) from every y, p and r data with the same "X0" as a single primary data for calculation.
Sorry for my bad english,
Thanks :)

Use vectors and matrices instead of individual scalars. These are indexed in almost the same way as you had before, i.e. y1 becomes y(1).
Then you can easily loop over the code 3 times and save the repetition.
See my commented code below.
% Define some X0. This should be a column vector.
X0 = [1; 2; 3];
% Make y,p,r into 3 element vectors
y = [45 56 67];
p = [34 45 56];
r = [23 34 45];
% Make R, Ryaw, Rpitch and Rroll 3x3x3 matrices
R = zeros(3,3,3);
Ryaw = zeros(3,3,3);
Rpitch = zeros(3,3,3);
Rroll = zeros(3,3,3);
% Make Coordinate a 3x3 matrix
Coordinate = zeros(3,3);
% Loop k from 1 to 3
% For each 3x3x3 matrix, the kth 3x3 matrix is equivalent to your Ryawk, Rpitchk, Rrollk, Rk
for k = 1:3
Ryaw(:,:,k) = [cosd(y(k)) -sind(y(k)) 0
sind(y(k)) cosd(y(k)) 0
0 0 1];
Rpitch(:,:,k)= [cosd(p(k)) 0 sind(p(k))
0 1 0
-sind(p(k)) 0 cos(p(k))];
Rroll(:,:,k) = [1 0 0
0 cosd(r(k)) -sind(r(k))
0 sind(r(k)) cosd(r(k))];
R(:,:,k) = Ryaw(:,:,k)*Rpitch(:,:,k)*Rroll(:,:,k);
Coordinate(:,k) = R(:,:,k)*X0;
end
disp(Coordinate)

Related

Create a neighbourhood graph from a given binary matrix using matlab

I am trying to create a neighbourhood graph from a given binary matrix B. Neighbourhood graph (A) is defined as an adjacency matrix such that
(A(i,j) = A(j,i) = 1)
if the original matrix B(i) = B(j) = 1 and i and j are adjacent to each (left, right, up, down or diagonal). Here I used the linear subscript to access the original matrix B. For example, consider the below matrix
B = [ 0 1 0;
0 1 1;
0 0 0 ];
My A will be a 9 * 9 graph as given below
A = [ 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0;
0 0 0 0 1 0 0 1 0;
0 0 0 1 0 0 0 1 0;
0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0;
0 0 0 1 1 0 0 0 0;
0 0 0 0 0 0 0 0 0 ];
Since in the original B matrix, B(4), B(5) and B(8) are adjacent with corresponding entries 1, the adjacency matrix A has 1 at A(4,5), A(5,4), A(4,8), A(8,4), A(5,8) and A(8,5).
How can I create such an adjacency matrix A given the matrix B in an efficient way?
This doesn't require any toolbox, and works for square or rectangular matrices. It uses array operations with complex numbers.
Consider a binary matrix B of size M×N.
Create an M×N matrix, t, that contains the complex coordinates of each nonzero entry of B. That is, entry t(r,c) contains r+1j*c if B(r,c) is nonzero, and NaN otherwise.
Compute an M*N×M*N matrix, d, containing the absolute difference for each pair of entries of B. Pairs of entries of B that are nonzero and adjacent will produce 1 or sqrt(2) in matrix d.
Build the result matrix, A, such that it contains 1 iff the corresponding entry in d equals 1 or sqrt(2). Equivalently, and more robust to numerical errors, iff the corresponding entry in d is between 0 and 1.5.
Code:
B = [0 1 0; 0 1 1; 0 0 0]; % input
t = bsxfun(#times, B, (1:size(B,1)).') + bsxfun(#times, B, 1j*(1:size(B,2)));
t(t==0) = NaN; % step 1
d = abs(bsxfun(#minus, t(:), t(:).')); % step 2
A = d>0 & d<1.5; % step 3
To get B back from A:
B2 = zeros(sqrt(size(A,1)));
B2(any(A,1)) = 1;
Here is a solution using image processing toolbox* that creates sparse matrix representation of the adjacency matrix:
B = [ 0 1 0;
0 1 1;
0 0 0 ]
n = numel(B);
C = zeros(size(B));
f = find(B);
C(f) = f;
D = padarray(C,[1 1]);
%If you don't have image processing toolbox
%D = zeros(size(C)+2);
%D(2:end-1,2:end-1)=C;
E = bsxfun(#times, im2col(D,[3 3]) , reshape(B, 1,[]));
[~ ,y] = find(E);
result = sparse(nonzeros(E),y,1,n,n);
result(1:n+1:end) = 0;
*More efficient implementation of im2col can be found here.

How to permute elements of a vector by another vector to obtain a matrix of permutations

I want to obtain all the possible permutations of one vector elements by another vector elements. For example one vector is A=[0 0 0 0] and another is B=[1 1]. I want to replace the elements of A by B to obtain all the permutations in a matrix like this [1 1 0 0; 1 0 1 0; 1 0 0 1; 0 1 1 0; 0 1 0 1; 0 0 1 1]. The length of real A is big and I should be able to choose the length of B_max and to obtain all the permutations of A with B=[1], [1 1], [1 1 1],..., B_max.
Thanks a lot
Actually, since A and B are always defined, respectively, as a vector of zeros and a vector of ones, this computation is much easier than you may think. The only constraints you should respect concerns B, which shoud not be empty and it's elements cannot be greater than or equal to the number of elements in A... because after that threshold A will become a vector of ones and calculating its permutations will be just a waste of CPU cycles.
Here is the core function of the script, which undertakes the creation of the unique permutations of 0 and 1 given the target vector X:
function p = uperms(X)
n = numel(X);
k = sum(X);
c = nchoosek(1:n,k);
m = size(c,1);
p = zeros(m,n);
p(repmat((1-m:0)',1,k) + m*c) = 1;
end
And here is the full code:
clear();
clc();
% Define the main parameter: the number of elements in A...
A_len = 4;
% Compute the elements of B accordingly...
B_len = A_len - 1;
B_seq = 1:B_len;
% Compute the possible mixtures of A and B...
X = tril(ones(A_len));
X = X(B_seq,:);
% Compute the unique permutations...
p = [];
for i = B_seq
p = [p; uperms(X(i,:).')];
end
Output for A_len = 4:
p =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

MATLAB Expanding A Matrix with Zeros

I need a matrix of nxn, where the first pxp of it contains ones and rest are zeros. I can do it with traversing the cells, so I'm not asking a way to do it. I'm looking for "the MATLAB way" to do it, using built-in functions and avoiding loops etc.
To be more clear;
let n=4 and p=2,
then the expected result is:
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0
There are possibly more than one elegant solution to do it, so I will accept the answer with the shortest and most readable one.
P.S. The question title looks a bit irrelevant: I put that title because my initial approach would be creating a pxp matrix with ones, then expanding it to nxn with zeros.
The answer is creating a matrix of zeroes, and then setting part of it to 1 using indexing:
For example:
n = 4;
p = 2;
x = zeros(n,n);
x(1:p,1:p) = 1;
If you insist on expanding, you can use:
padarray( zeros(p,p)+1 , [n-p n-p], 0, 'post')
Another way to expand the matrix with zeros:
>> p = 2; n = 4;
>> M = ones(p,p)
M =
1 1
1 1
>> M(n,n) = 0
M =
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0
You can create the matrix easily by concatenating horizontally and vertically:
n = 4;
p = 2;
MyMatrix = [ ones(p), zeros(p, n-p); zeros(n-p, n) ];
>> p = 2; n = 4;
>> a = [ones(p, 1); zeros(n - p, 1)]
a =
1
1
0
0
>> A = a * a'
A =
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

How to calculate the centroid of a matrix?

I have the following 5x5 Matrix A:
1 0 0 0 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 1
0 0 0 0 1
I am trying to find the centroid in MATLAB so I can find the scatter matrix with:
Scatter = A*Centroid*A'
If you by centroid mean the "center of mass" for the matrix, you need to account for the placement each '1' has in your matrix. I have done this below by using the meshgrid function:
M =[ 1 0 0 0 0;
1 1 1 0 0;
1 0 1 0 1;
0 0 1 1 1;
0 0 0 0 1];
[rows cols] = size(M);
y = 1:rows;
x = 1:cols;
[X Y] = meshgrid(x,y);
cY = mean(Y(M==1))
cX = mean(X(M==1))
Produces cX=3 and cY=3;
For
M = [1 0 0;
0 0 0;
0 0 1];
the result is cX=2;cY=2, as expected.
The centroid is simply the mean average computed separately for each dimension.
To find the centroid of each of the rows of your matrix A, you can call the mean function:
centroid = mean(A);
The above call to mean operates on rows by default. If you want to get the centroid of the columns of A, then you need to call mean as follows:
centroid = mean(A, 2);

How can I generate the following matrix in MATLAB?

I want to generate a matrix that is "stairsteppy" from a vector.
Example input vector: [8 12 17]
Example output matrix:
[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1]
Is there an easier (or built-in) way to do this than the following?:
function M = stairstep(v)
M = zeros(length(v),max(v));
v2 = [0 v];
for i = 1:length(v)
M(i,(v2(i)+1):v2(i+1)) = 1;
end
You can do this via indexing.
A = eye(3);
B = A(:,[zeros(1,8)+1, zeros(1,4)+2, zeros(1,5)+3])
Here's a solution without explicit loops:
function M = stairstep(v)
L = length(v); % M will be
V = max(v); % an L x V matrix
M = zeros(L, V);
% create indices to set to one
idx = zeros(1, V);
idx(v + 1) = 1;
idx = cumsum(idx) + 1;
idx = sub2ind(size(M), idx(1:V), 1:V);
% update the output matrix
M(idx) = 1;
EDIT: fixed bug :p
There's no built-in function I know of to do this, but here's one vectorized solution:
v = [8 12 17];
N = numel(v);
M = zeros(N,max(v));
M([0 v(1:N-1)]*N+(1:N)) = 1;
M(v(1:N-1)*N+(1:N-1)) = -1;
M = cumsum(M,2);
EDIT: I like the idea that Jonas had to use BLKDIAG. I couldn't help playing with the idea a bit until I shortened it further (using MAT2CELL instead of ARRAYFUN):
C = mat2cell(ones(1,max(v)),1,diff([0 v]));
M = blkdiag(C{:});
A very short version of a vectorized solution
function out = stairstep(v)
% create lists of ones
oneCell = arrayfun(#(x)ones(1,x),diff([0,v]),'UniformOutput',false);
% create output
out = blkdiag(oneCell{:});
You can use ones to define the places where you have 1's:
http://www.mathworks.com/help/techdoc/ref/ones.html