Are there plans to add 'OR' to attribute searches in Sphinx? - sphinx

A little background is in order for this question since it is on surface too generic:
Recently I ran into an issue where I had to move the attribute values I was pushing into my sphinxql query as full-text because the attribute needed to be part of an 'OR' query.
In other words I was doing:
Select * from idx_test where MATCH('Terms') and name_id in (1,2,3)
When I tried to add an 'OR' to the attributes such as:
Select * from idx_test where MATCH('Terms') and name_id in (1,2,3) OR customer_id in (4,5,6)
it failed because Sphinx 2.* does not support OR in the attribute query.
I was also unable to simply put the name and customer IDs in to the query:
Select * from idx_test where MATCH('Terms ((#(name_id) 1|2|3)|(#customer_id) 4|5|6))')
Because (as far as I can tell) you can't push integer fields into the full_text search.
My solution was to index the id fields a second time appended by _text:
Select name_id, name_id as name_id_text
and then add that to the field list:
sql_attr_uint = name_id
sql_field_string = name_id_text
sql_attr_uint = customer_id
sql_field_string = customer_id_text
So now I can do my OR query as full_text:
Select * from idx_test where MATCH('Terms ((#(name_id_text) 1|2|3)|(#customer_id_text) 4|5|6))')
However recently I found an article that discussed the tradeoff between attribute and full-text searches. The upshot is that "it could reduce performance of queries that otherwise match few records". Which is precisely what my name_id/city_id query does. In an ideal world then I'd be able to go back to:
Select * from idx_test where MATCH('Terms') and name_id in (1,2,3) OR customer_id in (4,5,6)
If Sphinx would only allow for OR between attributes since as far as I can tell once I have a query that is filtering down to a relatively low # of results I'd have a much faster query using attributes vs full_text.
So my two-part question therefor is:
Am I in fact correct that this is the case (a query that would reduce the # of results significantly is better served doing attributes then full-text)?
If so are there plans to add OR to the attribute part of the SphinxQL query?
If so, when?

OR filter has been added in the Sphinx fork (from 2.3 branch) - Manticore, see https://github.com/manticoresoftware/manticore/commit/76b04de04feb8a4db60d7309bf1e57114052e298
For now it's only between attributes, OR between MATCH and attributes is not supported yet.

While yes, OR is not supported directly in WHERE, can still run the query. Your
Select * from idx_test where MATCH('Terms') and name_id in (1,2,3) OR customer_id in (4,5,6)
example can be written as
Select *, IN(name_id,1,2,3) + IN(customer_id,4,5,6) as filter
from idx_test where MATCH('Terms') and filter > 0
It is a bit more cumbersome, but should work. You still get the full benefit of the full-text inverted index, so performance actully shoudnt be bad. The fitler is only executed against docs matching the terms.
(this may look crazy, if coming from say mysql background, but remeber sphinxQL isnt mysql :)
You dont get 'short circuiting (ie customer_id filter, will still be run, even if matches name_id), so perhaps
Select *, IF(IN(name_id,1,2,3) OR IN(customer_id,4,5,6),1,0) as filter
from idx_test where MATCH('Terms') and filter =1
is even better, the if function has an OR operator! (as sphinx could potentially short-circuit, but don't know if it does)
(but also yes, if the 'filter' is highly selective (matching few rows), than including in the full-text query can be good. As it discards the rows earlier in processing. The problem with non-selective filters, is they have lots of matching rows, so a long doclist to process during text-query processing)

Related

Refactoring query using DISTINCT and JOINing table with a lot of records

I am using PostgreSQL v 11.6. I've read a lot of questions asking about how to optimize queries which are using DISTINCT. Mine is not that different, but despite the other questions where the people usually want's to keep the other part of the query and just somehow make DISTINCT ON faster, I am willing to rewrite the query with the sole purpose to make it as performent as possible. The current query is this:
SELECT DISTINCT s.name FROM app.source AS s
INNER JOIN app.index_value iv ON iv.source_id = s.id
INNER JOIN app.index i ON i.id = iv.index_id
INNER JOIN app.namespace AS ns ON i.namespace_id=ns.id
WHERE (SELECT TRUE FROM UNNEST(Array['Default']::CITEXT[]) AS nss WHERE ns.name ILIKE nss LIMIT 1)
ORDER BY s.name;
The app.source table contains about 800 records. The other tables are under 5000 recrods tops, but the app.index_value contains 35_420_354 (about 35 million records) which I guess causes the overall slow execution of the query.
The EXPLAIN ANALYZE returns this:
I think that all relevent indexes are in place (maybe there can be made some small optimization) but I think that in order to get significant improvements in the time execution I need a better logic for the query.
The current execution time on a decent machine is 35~38 seconds.
Your query is not using DISTINCT ON. It is merely using DISTINCT which is quite a different thing.
SELECT DISTINCT is indeed often an indicator for a oorly written query, because DISTINCT is used to remove duplicates and it is often the case tat the query creates those duplicates itself. The same is true for your query. You simply want all names where certain entries exist. So, use EXISTS (or IN for that matter).
EXISTS
SELECT s.name
FROM app.source AS s
WHERE EXISTS
(
SELECT NULL
FROM app.index_value iv
JOIN app.index i ON i.id = iv.index_id
JOIN app.namespace AS ns ON i.namespace_id = ns.id
WHERE iv.source_id = s.id
AND (SELECT TRUE FROM UNNEST(Array['Default']::CITEXT[]) AS nss WHERE ns.name ILIKE nss LIMIT 1)
)
ORDER BY s.name;
IN
SELECT s.name
FROM app.source AS s
WHERE s.id IN
(
SELECT iv.source_id
FROM app.index_value iv
JOIN app.index i ON i.id = iv.index_id
JOIN app.namespace AS ns ON i.namespace_id = ns.id
WHERE (SELECT TRUE FROM UNNEST(Array['Default']::CITEXT[]) AS nss WHERE ns.name ILIKE nss LIMIT 1)
)
ORDER BY s.name;
Thus we avoid creating an unnecessarily large intermediate result.
Update 1
From the database side we can support queries with appropriate indexes. The only criteria used in your query that limits selected rows is the array lookup, though. This is probably slow, because the DBMS cannot use database indexes here as far as I know. And depending on the array content we can end up with zero app.namespace rows, few rows, many rows or even all rows. The DBMS cannot even make proper assumptions on know how many. From there we'll retrieve the related index and index_value rows. Again, these can be all or none. The DBMS could use indexes here or not. If it used indexes this would be very fast on small sets of rows and extremely slow on large data sets. And if it used full table scans and joined these via hash joins for instance, this would be the fastest approach for many rows and rather slow on few rows.
You can create indexes and see whether they get used or not. I suggest:
create index idx1 on app.index (namespace_id, id);
create index idx2 on app.index_value (index_id, source_id);
create index idx3 on app.source (id, name);
Update 2
I am not versed with arrays. But t looks like you want to check if a matching condition exists. So again EXISTS might be a tad more appropriate:
WHERE EXISTS
(
SELECT NULL
FROM UNNEST(Array['Default']::CITEXT[]) AS nss
WHERE ns.name ILIKE nss
)
Update 3
One more idea (I feel stupid now to have missed that): For each source we just look up whether there is at least one match. So maybe the DBMS starts with the source table and goes from that table to the next. For this we'd use the following indexes:
create index idx4 on index_value (source_id, index_id);
create index idx5 on index (id, namespace_id);
create index idx6 on namespace (id, name);
Just add them to your database and see what happens. You can always drop indexes again when you see the DBMS doesn't use them.

What is the correct way to create a case-insensitive trigram-index in postgres?

...and is it something I should do anyway?
From my brief testing, making a trigram index and searching using
where name like '%query%'
is faster than
where name ilike '%query%'
So it seems like I should do it, but I'm surprised I've not been able to find out how.
(My test data is fairly homogenous - 1.5M rows made up of 16 entries repeated. I can imagine this might mess with the results.)
This is how I expected it to work (note the lower(name)):
create extension pg_trgm;
create table users(name text);
insert into users values('Barry');
create index "idx" on users using gin (lower(name) gin_trgm_ops);
select count(*) from users where (name like '%bar%');
but this returns 0.
Either of
select count(*) from users where (name like '%Bar%');
or
select count(*) from users where (name ilike '%bar%');
work, which makes me believe the trigrams in the index are not lower()'d. Am I misunderstanding how this works under the hood? Is it not possible to call lower there?
I note that this
select show_trgm('Barry')
returns lowercase trigrams:
{" b"," ba",arr,bar,rry,"ry "}
So I'm perplexed.
The trigrams are definitely lower case.
The conundrum becomes cleared up when you consider how trigram indexes are used: they act as a filter that eliminates the majority of non-matches, but allow false positive results (among other reasons is their case insensitivity). That's why there always has to be a recheck to eliminate those false positives, and that us why you always get a bitmap index scan.
The ILIKE query may be slower because it has more results, or because case insensitive comparisons require more effort.

Searching individual words in a string

I know about full-text search, but that only matches your query against individual words. I want to select strings that contain a word that starts with words in my query. For example, if I search:
appl
the following should match:
a really nice application
apples are cool
appliances
since all those strings contains words that start with appl. In addition, it would be nice if I could select the number of words that match, and sort based on that.
How can I implement this in PostgreSQL?
Prefix matching with Full Text Search
FTS supports prefix matching. Your query works like this:
SELECT * FROM tbl
WHERE to_tsvector('simple', string) ## to_tsquery('simple', 'appl:*');
Note the appended :* in the tsquery. This can use an index.
See:
Get partial match from GIN indexed TSVECTOR column
Alternative with regular expressions
SELECT * FROM tbl
WHERE string ~ '\mappl';
Quoting the manual here:
\m .. matches only at the beginning of a word
To order by the count of matches, you could use regexp_matches()
SELECT tbl_id, count(*) AS matches
FROM (
SELECT tbl_id, regexp_matches(string, '\mappl', 'g')
FROM tbl
WHERE string ~ '\mappl'
) sub
GROUP BY tbl_id
ORDER BY matches DESC;
Or regexp_split_to_table():
SELECT tbl_id, string, count(*) - 1 AS matches
FROM (
SELECT tbl_id, string, regexp_split_to_table(string, '\mappl')
FROM tbl
WHERE string ~ '\mappl'
) sub
GROUP BY 1, 2
ORDER BY 3 DESC, 2, 1;
db<>fiddle here
Old sqlfiddle
Postgres 9.3 or later has index support for simple regular expressions with a trigram GIN or GiST index. The release notes for Postgres 9.3:
Add support for indexing of regular-expression searches in pg_trgm
(Alexander Korotkov)
See:
PostgreSQL LIKE query performance variations
Depesz wrote a blog about index support for regular expressions.
SELECT * FROM some_table WHERE some_field LIKE 'appl%' OR some_field LIKE '% appl%';
As for counting the number of words that match, I believe that would be too expensive to do dynamically in postgres (though maybe someone else knows better). One way you could do it is by writing a function that counts occurrences in a string, and then add ORDER BY myFunction('appl', some_field). Again though, this method is VERY expensive (i.e. slow) and not recommended.
For things like that, you should probably use a separate/complimentary full-text search engine like Sphinx Search (google it), which is specialized for that sort of thing.
An alternative to that, is to have another table that contains keywords and the number of occurrences of those keywords in each string. This means you need to store each phrase you have (e.g. really really nice application) and also store the keywords in another table (i.e. really, 2, nice, 1, application, 1) and link that keyword table to your full-phrase table. This means that you would have to break up strings into keywords as they are entered into your database and store them in two places. This is a typical space vs speed trade-off.

Postgresql ILIKE versus TSEARCH

I have a query with a number of test fields something like this:
SELECT * FROM some-table
WHERE field1 ILIKE "%thing%"
OR field2 ILIKE "%thing"
OR field3 ILIKE "%thing";
The columns are pretty much all varchar(50) or thereabouts. Now I understand to improve performance I should index the fields upon which the search operates. Should I be considering replacing ILIKE with TSEARCH completely?
A full text search setup is not identical to a "contains" like query. It stems words etc so you can match "cars" against "car".
If you really want a fast ILIKE then no standard database index or FTS will help. Fortunately, the pg_trgm module can do that.
http://www.postgresql.org/docs/9.1/static/pgtrgm.html
http://www.depesz.com/2011/02/19/waiting-for-9-1-faster-likeilike/
One thing that is very important: NO B-TREE INDEX will ever improve this kind of search:
where field ilike '%SOMETHING%'
What I am saying is that if you do a:
create index idx_name on some_table(field);
The only access you will improve is where field like 'something%'. (when you search for values starting with some literal). So, you will get no benefit by adding a regular index to field column in this case.
If you need to improve your search response time, definitely consider using FULL TEXT SEARCH.
Adding a bit to what the others have said.
First you can't really use an index based on a value in the middle of the string. Indexes are tree searches generally, and you have no way to know if your search will be faster than just scanning the table, so PostgreSQL will default to a seq scan. Indexes will only be used if they match the first part of the string. So:
SELECT * FROM invoice
WHERE invoice_number like 'INV-2012-435%'
may use an index but like '%44354456%' cannot.
In general in LedgerSMB we use both, depending on what kind of search we are doing. You might see a search like:
select * from parts
WHERE partnumber ilike ? || '%'
and plainto_tsquery(get_default_language(), ?) ## description;
So these are very different. Use each one where it makes the most sense.

Cannot sort a row of size 8130, which is greater than the allowable maximum of 8094

SELECT DISTINCT tblJobReq.JobReqId
, tblJobReq.JobStatusId
, tblJobClass.JobClassId
, tblJobClass.Title
, tblJobReq.JobClassSubTitle
, tblJobAnnouncement.JobClassDesc
, tblJobAnnouncement.EndDate
, blJobAnnouncement.AgencyMktgVerbage
, tblJobAnnouncement.SpecInfo
, tblJobAnnouncement.Benefits
, tblSalary.MinRateSal
, tblSalary.MaxRateSal
, tblSalary.MinRateHour
, tblSalary.MaxRateHour
, tblJobClass.StatementEval
, tblJobReq.ApprovalDate
, tblJobReq.RecruiterId
, tblJobReq.AgencyId
FROM ((tblJobReq
LEFT JOIN tblJobAnnouncement ON tblJobReq.JobReqId = tblJobAnnouncement.JobReqId)
INNER JOIN tblJobClass ON tblJobReq.JobClassId = tblJobClass.JobClassId)
LEFT JOIN tblSalary ON tblJobClass.SalaryCode = tblSalary.SalaryCode
WHERE (tblJobReq.JobClassId in (SELECT JobClassId
from tblJobClass
WHERE tblJobClass.Title like '%Family Therapist%'))
When i try to execute the query it results in the following error.
Cannot sort a row of size 8130, which is greater than the allowable maximum of 8094
I checked and didn't find any solution. The only way is to truncate (substring())the "tblJobAnnouncement.JobClassDesc" in the query which has column size of around 8000.
Do we have any work around so that i need not truncate the values. Or Can this query be optimised? Any setting in SQL Server 2000?
The [non obvious] reason why SQL needs to SORT is the DISTINCT keyword.
Depending on the data and underlying table structures, you may be able to do away with this DISTINCT, and hence not trigger this error.
You readily found the alternative solution which is to truncate some of the fields in the SELECT list.
Edit: Answering "Can you please explain how DISTINCT would be the reason here?"
Generally, the fashion in which the DISTINCT requirement is satisfied varies with
the data context (expected number of rows, presence/absence of index, size of row...)
the version/make of the SQL implementation (the query optimizer in particular receives new or modified heuristics with each new version, sometimes resulting in alternate query plans for various constructs in various contexts)
Yet, all the possible plans associated with a "DISTINCT query" involve *some form* of sorting of the qualifying records. In its simplest form, the plan "fist" produces the list of qualifying rows (records) (the list of records which satisfy the WHERE/JOINs/etc. parts of the query) and then sorts this list (which possibly includes some duplicates), only retaining the very first occurrence of each distinct row. In other cases, for example when only a few columns are selected and when some index(es) covering these columns is(are) available, no explicit sorting step is used in the query plan but the reliance on an index implicitly implies the "sortability" of the underlying columns. In other cases yet, steps involving various forms of merging or hashing are selected by the query optimizer, and these too, eventually, imply the ability of comparing two rows.
Bottom line: DISTINCT implies some sorting.
In the specific case of the question, the error reported by SQL Server and preventing the completion of the query is that "Sorting is not possible on rows bigger than..." AND, the DISTINCT keyword is the only apparent reason for the query to require any sorting (BTW many other SQL constructs imply sorting: for example UNION) hence the idea of removing the DISTINCT (if it is logically possible).
In fact you should remove it, for test purposes, to assert that, without DISTINCT, the query completes OK (if only including some duplicates). Once this fact is confirmed, and if effectively the query could produce duplicate rows, look into ways of producing a duplicate-free query without the DISTINCT keyword; constructs involving subqueries can sometimes be used for this purpose.
An unrelated hint, is to use table aliases, using a short string to avoid repeating these long table names. For example (only did a few tables, but you get the idea...)
SELECT DISTINCT JR.JobReqId, JR.JobStatusId,
tblJobClass.JobClassId, tblJobClass.Title,
JR.JobClassSubTitle, JA.JobClassDesc, JA.EndDate, JA.AgencyMktgVerbage,
JA.SpecInfo, JA.Benefits,
S.MinRateSal, S.MaxRateSal, S.MinRateHour, S.MaxRateHour,
tblJobClass.StatementEval,
JR.ApprovalDate, JR.RecruiterId, JR.AgencyId
FROM (
(tblJobReq AS JR
LEFT JOIN tblJobAnnouncement AS JA ON JR.JobReqId = JA.JobReqId)
INNER JOIN tblJobClass ON tblJobReq.JobClassId = tblJobClass.JobClassId)
LEFT JOIN tblSalary AS S ON tblJobClass.SalaryCode = S.SalaryCode
WHERE (JR.JobClassId in
(SELECT JobClassId from tblJobClass
WHERE tblJobClass.Title like '%Family Therapist%'))
FYI, running this SQL command on your DB can fix the problem if it is caused by space that needs to be reclaimed after dropping variable length columns:
DBCC CLEANTABLE (0,[dbo.TableName])
See: http://msdn.microsoft.com/en-us/library/ms174418.aspx
This is a limitation of SQL Server 2000. You can:
Split it into two queries and combine elsewhere
SELECT ID, ColumnA, ColumnB FROM TableA JOIN TableB
SELECT ID, ColumnC, ColumnD FROM TableA JOIN TableB
Truncate the columns appropriately
SELECT LEFT(LongColumn,2000)...
Remove any redundant columns from the SELECT
SELECT ColumnA, ColumnB, --IDColumnNotUsedInOutput
FROM TableA
Migrate off of SQL Server 2000