Matlab simple loop for different function variables - matlab

I wrote a simple MatLab script to evaluate forward, backward and central difference approximations of first and second derivatives for a spesific function
(y = x^3-5x)
at two different x values
(x=0.5 and x = 1.5)
and for 7 different step sizes h and compare the relative errors of the approximations to the analytical derivatives.
However, i need to enter x and h values manually every time. Question is, how do I create a loop for 7 different h values and 2 different x values and get all the results as a matrix?
clc
clear all
close all
h = 0.00001;
x1 = 0.5;
y = #(x) x.^3 - 5*x;
dy = #(x) 3*x.^2 - 5;
ddy = #(x) 6*x;
d1 = dy(x1);
d2 = ddy(x1);
%Forward Differencing
f1 = (y(x1+h) - y(x1))/h;
f2 = (y(x1+2*h) - 2*y(x1+h) + y(x1))/(h.^2);
%Central Differencing
c1 = (y(x1+h)-y(x1-h))/(2*h);
c2 = (y(x1+h)-2*y(x1)+y(x1-h))/(h.^2);
% Backward Differencing
b1 = (y(x1) - y(x1-h))/h;
b2 = (y(x1)-2*y(x1-h)+y(x1-2*h))/(h.^2);
% Relative Errors
ForwardError1 = (f1 - dy(x1))/dy(x1);
ForwardError2 = (f2 - ddy(x1))/ddy(x1);
CentralError1 = (c1 - dy(x1))/dy(x1);
CentralError2 = (c2 - ddy(x1))/ddy(x1);
BackwardError1 = (b1 - dy(x1))/dy(x1);
BackwardError2 = (b2 - ddy(x1))/ddy(x1);

You don't need a loop. You can use meshgrid to create all combinations of your arguments (x and h in your case) and use these as inputs to your functions.
To get combinations of x = [0.5, 1.5] and h=0.00001:0.00001:0.00007 (I assume since you did not specify h values in the question), you would do:
[x, h] = meshgrid([0.5, 1.5], 0.00001:0.00001:0.00007);
y = #(x) x.^3 - 5*x;
f1 = (y(x1+h) - y(x1))./h;
Here x,h are matrices of size 7x2, and so is the result f1. Note that / was changed to ./ as h is a matrix and we want per-element operations.

Related

Matlab: Extract values that I plot but which has not been stored

I have a mathematical function E which I want to minimize. I get from solving this 16 possible solutions x1, x2, ..., x16, only two of which that actually minimize the function (located at a minimum). Using a for loop, I can then plug all of these 16 solutions into the original function, and select the solutions I need by applying some criteria via if statements (plotting E vs E(x) if x is real and positive, if first derivative of E is below a threshold, and if the second derivative of E is positive).
That way I only plot the solutions I'm interested in. However, I would now like to extract the relevant x that I plot. Here's a sample MATLAB code that plots the way I just described. I want to extract the thetas that I actually end up plotting. How to do that?
format long
theta_s = 0.77944100;
sigma = 0.50659500;
Delta = 0.52687700;
%% Defining the coefficients of the 4th degree polynomial
alpha = cos(2*theta_s);
beta = sin(2*theta_s);
gamma = 2*Delta^2/sigma^2;
a = -gamma^2 - beta^2*Delta^2 - alpha^2*Delta^2 + 2*alpha*Delta*gamma;
b = 2*alpha*gamma - 2*Delta*gamma - 2*alpha^2*Delta + 2*alpha*Delta^2 -...
2*beta^2*Delta;
c = 2*gamma^2 - 2*alpha*Delta*gamma - 2*gamma - alpha^2 + 4*alpha*Delta +...
beta^2*Delta^2 - beta^2 - Delta^2;
d = -2*alpha*gamma + 2*Delta*gamma + 2*alpha + 2*beta^2*Delta - 2*Delta;
e = beta^2 - gamma^2 + 2*gamma - 1;
%% Solve the polynomial numerically.
P = [a b c d e];
R = roots(P);
%% Solve r = cos(2x) for x: x = n*pi +- 1/2 * acos(r). Using n = 0 and 1.
theta = [1/2.*acos(R) -1/2.*acos(R) pi+1/2.*acos(R) pi-1/2.*acos(R)];
figure;
hold on;
x = 0:1/1000:2*pi;
y_1 = sigma*cos(x - theta_s) + sqrt(1 + Delta*cos(2*x));
y_2 = sigma*cos(x - theta_s) - sqrt(1 + Delta*cos(2*x));
plot(x,y_1,'black');
plot(x,y_2,'black');
grid on;
%% Plot theta if real, if positive, if 1st derivative is ~zero, and if 2nd derivative is positive
for j=1:numel(theta);
A = isreal(theta(j));
x_j = theta(j);
y_j = sigma*cos(x_j - theta_s) + sqrt(1 + Delta*cos(2*x_j));
FirstDer = sigma* sin(theta(j) - theta_s) + Delta*sin(2*theta(j))/...
sqrt(1 + Delta*cos(2*theta(j)));
SecDer = -sigma*cos(theta(j)-theta_s) - 2*Delta*cos(2*theta(j))/...
(1 + Delta*cos(2*theta(j)))^(1/2) - Delta^2 * (sin(2*theta(j)))^2/...
(1 + Delta*cos(2*theta(j)))^(3/2);
if A == 1 && x_j>=0 && FirstDer < 1E-7 && SecDer > 0
plot(x_j,y_j,['o','blue'])
end
end
After you finish all plotting, get the axes handle:
ax = gca;
then write:
X = get(ax.Children,{'XData'});
And X will be cell array of all the x-axis values from all lines in the graph. One cell for each line.
For the code above:
X =
[1.961054062875753]
[4.514533853417446]
[1x6284 double]
[1x6284 double]
(First, the code all worked. Thanks for the effort there.)
There are options here. A are couple below
Record the values as you generate them
Within the "success" if statement, simply record the values. See edits to your code below.
This would always be the preferred option for me, it just seems much more efficient.
xyResults = zeros(0,2); %%% INITIALIZE HERE
for j=1:numel(theta);
A = isreal(theta(j));
x_j = theta(j);
y_j = sigma*cos(x_j - theta_s) + sqrt(1 + Delta*cos(2*x_j));
FirstDer = sigma* sin(theta(j) - theta_s) + Delta*sin(2*theta(j))/...
sqrt(1 + Delta*cos(2*theta(j)));
SecDer = -sigma*cos(theta(j)-theta_s) - 2*Delta*cos(2*theta(j))/...
(1 + Delta*cos(2*theta(j)))^(1/2) - Delta^2 * (sin(2*theta(j)))^2/...
(1 + Delta*cos(2*theta(j)))^(3/2);
if A == 1 && x_j>=0 && FirstDer < 1E-7 && SecDer > 0
xyResults(end+1,:) = [x_j y_j]; %%%% RECORD HERE
plot(x_j,y_j,['o','blue'])
end
end
Get the result from the graphics objects
You can get the data you want from the actual graphics objects. This would be the option if there was just no way to capture the data as it was generated.
%First find the objects witht the data you want
% (Ideally you could record handles to the lines as you generated
% them above. But then you could also simply record the answer, so
% let's assume that direct record is not possible.)
% (BTW, 'findobj' is an underused, powerful function.)
h = findobj(0,'Marker','o','Color','b','type','line')
%Then get the `xdata` filed from each
capturedXdata = get(h,'XData');
capturedXdata =
2×1 cell array
[1.96105406287575]
[4.51453385341745]
%Then get the `ydata` filed from each
capturedYdata = get(h,'YData');
capturedYdata =
2×1 cell array
[1.96105406287575]
[4.51453385341745]

How to iterate over functions?

I would like to apply loop over a function. I have the following "mother" code:
v = 1;
fun = #root;
x0 = [0,0]
options = optimset('MaxFunEvals',100000,'MaxIter', 10000 );
x = fsolve(fun,x0, options)
In addition, I have the following function in a separate file:
function D = root(x)
v = 1;
D(1) = x(1) + x(2) + v - 2;
D(2) = x(1) - x(2) + v - 1.8;
end
Now, I would like to find roots when v = sort(rand(1,1000)). In other words, I would like to iterate over function for each values of v.
You will need to modify root to accept an additional variable (v) and then change the function handle to root to an anonymous function which feeds in the v that you want
function D = root(x, v)
D(1) = x(1) + x(2) + v - 2;
D(2) = x(1) - x(2) + v - 1.8;
end
% Creates a function handle to root using a specific value of v
fun = #(x)root(x, v(k))
Just in case that equation is your actual equation (and not a dummy example): that equation is linear, meaning, you can solve it for all v with a simple mldivide:
v = sort(rand(1,1000));
x = [1 1; 1 -1] \ bsxfun(#plus, -v, [2; 1.8])
And, in case those are not your actual equations, you don't need to loop, you can vectorize the whole thing:
function x = solver()
options = optimset('Display' , 'off',...
'MaxFunEvals', 1e5,...
'MaxIter' , 1e4);
v = sort(rand(1, 1000));
x0 = repmat([0 0], numel(v), 1);
x = fsolve(#(x)root(x,v'), x0, options);
end
function D = root(x,v)
D = [x(:,1) + x(:,2) + v - 2
x(:,1) - x(:,2) + v - 1.8];
end
This may or may not be faster than looping, it depends on your actual equations.
It may be slower because fsolve will need to compute a Jacobian of 2000×2000 (4M elements), instead of 2×2, 1000 times (4k elements).
But, it may be faster because the startup cost of fsolve can be large, meaning, the overhead of many calls may in fact outweigh the cost of computing the larger Jacobian.
In any case, providing the Jacobian as a second output will speed everything up rather enormously:
function solver()
options = optimset('Display' , 'off',...
'MaxFunEvals', 1e5,...
'MaxIter' , 1e4,...
'Jacobian' , 'on');
v = sort(rand(1, 1000));
x0 = repmat([1 1], numel(v), 1);
x = fsolve(#(x)root(x,v'), x0, options);
end
function [D, J] = root(x,v)
% Jacobian is constant:
persistent J_out
if isempty(J_out)
one = speye(numel(v));
J_out = [+one +one
+one -one];
end
% Function values at x
D = [x(:,1) + x(:,2) + v - 2
x(:,1) - x(:,2) + v - 1.8];
% Jacobian at x:
J = J_out;
end
vvec = sort(rand(1,2));
x0 = [0,0];
for v = vvec,
fun = #(x) root(v, x);
options = optimset('MaxFunEvals',100000,'MaxIter', 10000 );
x = fsolve(fun, x0, options);
end
with function definition:
function D = root(v, x)
D(1) = x(1) + x(2) + v - 2;
D(2) = x(1) - x(2) + v - 1.8;
end

The Fastest Method of Solving System of Non-linear Equations in MATLAB

Assume we have three equations:
eq1 = x1 + (x1 - x2) * t - X == 0;
eq2 = z1 + (z1 - z2) * t - Z == 0;
eq3 = ((X-x1)/a)^2 + ((Z-z1)/b)^2 - 1 == 0;
while six of known variables are:
a = 42 ;
b = 12 ;
x1 = 316190;
z1 = 234070;
x2 = 316190;
z2 = 234070;
So we are looking for three unknown variables that are:
X , Z and t
I wrote two method to solve it. But, since I need to run these code for 5.7 million data, it become really slow.
Method one (using "solve"):
tic
S = solve( eq1 , eq2 , eq3 , X , Z , t ,...
'ReturnConditions', true, 'Real', true);
toc
X = double(S.X(1))
Z = double(S.Z(1))
t = double(S.t(1))
results of method one:
X = 316190;
Z = 234060;
t = -2.9280;
Elapsed time is 0.770429 seconds.
Method two (using "fsolve"):
coeffs = [a,b,x1,x2,z1,z2]; % Known parameters
x0 = [ x2 ; z2 ; 1 ].'; % Initial values for iterations
f_d = #(x0) myfunc(x0,coeffs); % f_d considers x0 as variables
options = optimoptions('fsolve','Display','none');
tic
M = fsolve(f_d,x0,options);
toc
results of method two:
X = 316190; % X = M(1)
Z = 234060; % Z = M(2)
t = -2.9280; % t = M(3)
Elapsed time is 0.014 seconds.
Although, the second method is faster, but it still needs to be improved. Please let me know if you have a better solution for that. Thanks
* extra information:
if you are interested to know what those 3 equations are, the first two are equations of a line in 2D and the third equation is an ellipse equation. I need to find the intersection of the line with the ellipse. Obviously, we have two points as result. But, let's forget about the second answer for simplicity.
My suggestion it's to use the second approce,which it's the recommended by matlab for nonlinear equation system.
Declare a M-function
function Y=mysistem(X)
%X(1) = X
%X(2) = t
%X(3) = Z
a = 42 ;
b = 12 ;
x1 = 316190;
z1 = 234070;
x2 = 316190;
z2 = 234070;
Y(1,1) = x1 + (x1 - x2) * X(2) - X(1);
Y(2,1) = z1 + (z1 - z2) * X(2) - X(3);
Y(3,1) = ((X-x1)/a)^2 + ((Z-z1)/b)^2 - 1;
end
Then for solving use
x0 = [ x2 , z2 , 1 ];
M = fsolve(#mysistem,x0,options);
If you may want to reduce the default precision by changing StepTolerance (default 1e-6).
Also for more increare you may want to use the jacobian matrix for greater efficencies.
For more reference take a look in official documentation:
fsolve Nonlinear Equations with Analytic Jacobian
Basically giving the solver the Jacobian matrix of the system(and special options) you can increase method efficency.

Matlab - Legend does not show different colors

can anybody help me?I cant show the legend lines different colors.How can I do it?
a1 = 0; b1 = 4;
a2 = 4; b2 = 10;
a3 = 6; b3 = 20;
x1=a1:.01:b1;
x2=a2:.01:b2;
x3=a3:.01:b3;
f1 = 1 ./ (b1 - a1);
f2 = 1 ./ (b2 - a2);
f3 = 1 ./ (b3 - a3);
plot(x1,f1,'r',x2,f2,'b',x3,f3,'y');
grid
xlabel('0 < x < 7 , 0.01 örnek aralığında') % x ekseni başlığı
ylabel('Üstel dağılımın olasılık yoğunluk fonksiyonu') % y ekseni başlığı
legend('s1','s2','s3')
You are plotting a vector x1, x2, x3 against a scalar f1, f2, f3. From the documentation for plot():
If one of X or Y is a scalar and the other is a vector, then the plot
function plots the vector as discrete points at the scalar value.
Each data point in your vector is plotted against the corresponding f value as a separate lineseries, giving you 2403 separate line series. In your legend call you add legend strings for the first 3 line series, which are all going to be red since the first 401 lineseries are red. If your desire is to plot a horizontal line you can create vectors from your f variables using repmat()
Using your example:
a1 = 0; b1 = 4;
a2 = 4; b2 = 10;
a3 = 6; b3 = 20;
x1=a1:.01:b1;
x2=a2:.01:b2;
x3=a3:.01:b3;
f1 = repmat((1 ./ (b1 - a1)), size(x1));
f2 = repmat((1 ./ (b2 - a2)), size(x2));
f3 = repmat((1 ./ (b3 - a3)), size(x3));
plot(x1,f1,'r',x2,f2,'b',x3,f3,'y');
grid
xlabel('0 < x < 7 , 0.01 örnek aralığında') % x ekseni başlığı
ylabel('Üstel dağılımın olasılık yoğunluk fonksiyonu') % y ekseni başlığı
legend('s1','s2','s3')

Vectorizing in matlab

I am searching for a way to get rid of the following loop (over theta):
for i=1:1:length(theta)
V2_ = kV2*cos(theta(i));
X = X0+V2_;
Y = Y0-V2_*(k1-k2);
Z = sqrt(X.^2-Z0-4*V2_.*(k.^2*D1+k1));
pktheta(:,i)=exp(-t/2*V2_).*(cosh(t/2*Z)+...
Y./((k1+k2)*Z).*sinh(t/2*Z));
end
where X0,Y0,Z0 and kV2 are dependent on the vector k (same size). t, D1, k1 and k2 are numbers. Since I have to go through this loop several times, how can I speed it up?
Thanks
Try this -
N = numel(theta);
V2_ = kV2*cos(theta(1:N));
X0 = repmat(X0,[1 N]);
Y0 = repmat(Y0,[1 N]);
Z0 = repmat(Z0,[1 N]);
X = X0 + V2_;
Y = Y0-V2_*(k1-k2);
Z = sqrt(X.^2-Z0-4.*V2_ .* repmat(((1:N).^2)*D1 + k1.*ones(1,N),[size(X0,1) 1]));
pktheta = exp(-t/2*V2_).*(cosh(t/2*Z) + Y./((k1+k2)*Z).*sinh(t/2*Z));
Definitely BSXFUN must be faster, if someone could post with it.