simulink discrete 0 and 1 function - matlab

I am running the model in external mode in real time hardware with discrete fixed step solver. I need to generate an input signal to my hardware as boolean 0 and 1 with sample time 0.01.
1.Is there any block to generate 0 and 1 as input signal in simulink.
2.Also another doubt, with input start for 2second as 1 and 5 second as 0 and another desired (as user desired time it can give input as 1 or 0 )
Kindly suggest me.

Related

Simulink logic to active output signal when variable is 2

How shall I activate signalA output signal when input signal value is 0 to 2.
Example: when input signal is 2, active output.
When input signal is other than 2, reactive output.
Which means, when input signal value is from decending 5 to 2,output signal shall not active. Only need to active ascending 0 to 2 using simulink blocks

Choosing which variables to normalize while applying logistic regression

Suppose a dataset comprises independent variables that are continuous and binary variables. Usually the label/outcome column is converted to a one hot vector, whereas continuous variables can be normalized. But what needs to be applied for binary variables.
AGE RACE GENDER NEURO EMOT
15.95346 0 0 3 1
14.57084 1 1 0 0
15.8193 1 0 0 0
15.59754 0 1 0 0
How does this apply for logistic regression and neural networks?
If the range of continuous value is small, encode it into a binary form and use each bit of that binary form as a predictor.
For example, number 2 = 10 in binary.
Therefore
predictor_bit_0 = 0
predictor_bit_1 = 1
Try and see if it works. Just to warn you, this method is very subjective and may or may not yield good results for your data. I'll keep you posted if I find a better solution

How to properly model ANN to find relationship between real value input-output data?

I'm trying to make an ANN which could tell me if there is causality between my input and output data. Data is following:
My input are measured values of pesticides (19 total) in an area eg:
-1.031413662 -0.156086316 -1.079232918 -0.659174849 -0.734577317 -0.944137546 -0.596917991 -0.282641072 -0.023508282 3.405638835 -1.008434997 -0.102330305 -0.65961995 -0.687140701 -0.167400684 -0.4387984 -0.855708613 -0.775964435 1.283238514
And the output is the measured value of plant-somthing in the same area (55 total) eg:
0.00 0.00 0.00 13.56 0 13.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.56 0 0 0 1.69 0 0 0 0 0 0 0 0 0 0 1.69 0 0 0 0 13.56 0 0 0 0 13.56 0 0 0 0 0 0
Values for input are in range from -2.5 to 10, and for output from 0 to 100.
So the question I'm trying to answer is: in what measure does pesticide A affect plant-somthings.
What are good ways to model (represent) input/output neurons to be able to process the mentioned input/output data? And how to scale/convert input/output data to be useful for NN?
Is there a book/paper that I should look at?
First, a neural network cannot find the causality between output and input, but only the correlation (just like every other probabilistic methods). Causality can only be derived logically from reasoning (and even then, it's not always clear, it all depends on your axioms).
Secondly, about how to design a neural network to model your data, here is a pretty simple rule that can be generally applied to make a first working draft:
set the number of input neurons = the number of input variables for one sample
set the number of output neurons = the number of output variables for one sample
then play with the number of hidden layers and the number of hidden neurons per hidden layer. In practice, you want to use the fewest number of hidden layers/neurons to model your data correctly, but enough so that the function approximated by your neural network fits correctly the data (else the error in output will be huge compared to the real output dataset).
Why do you need to use just enough neurons but not too much? This is because if you use a lot of hidden neurons, you are sure to overfit your data, and thus you will make a perfect prediction on your training dataset, but not in the general case when you will use real datasets. Theoretically, this is because a neural network is a function approximator, thus it can approximate any function, but using a too high order function will lead to overfitting. See PAC learning for more info on this.
So, in your precise case, the first thing to do is to clarify how many variables you have in input and in output for each sample. If it's 19 in input, then create 19 input nodes, and if you have 55 output variables, then create 55 output neurons.
About scaling and pre-processing, yes you should normalize your data between the range 0 and 1 (or -1 and 1 it's up to you and it depends on the activation function). A very good place to start is to watch the videos at the machine learning course by Andrew Ng at Coursera, this should get you kickstarted quickly and correctly (you'll be taught the tools to check that your neural network is working correctly, and this is immensely important and useful).
Note: you should check your output variables, from the sample you gave it seems they use discrete values: if the values are discrete, then you can use discrete output variables which will be a lot more precise and predictive than using real, floating values (eg, instead of having [0, 1.69, 13.56] as the possible output values, you'll have [0,1,2], this is called "binning" or multi-class categorization). In practice, this means you have to change the way your network works, by using a classification neural network (using activation functions such as sigmoid) instead of a regressive neural network (using activation functions such as logistic regression or rectified linear unit).

Neural Network for a Robot

I need to implement a Robot Brain, I used feedforward neural network as a Controller. The robot has 24 sonar sonsor, and only one ouput which is R=Right, L=Left, F=Forward, B=Back. I also have a large dataset which contain sonar data and the desired output. The FNN is trained using backpropagation algorithm.
I used neuroph Studio to construct the FNN and to do the trainnig. Here the network params:
Input layer: 24
Hidden Layer: 10
Output Layer: 1
LearnningRate: 0.5
Momentum: 0.7
GlobalError: 0.1
My problem is that during iteration the error drop slightly and seems to be static. I tried to change the parameter but I'm not getting any useful result!!
Thanks for your help
Use 1 of n encoding for the output. Use 4 output neurons, and set up your target (output) data like this:
1 0 0 0 = right
0 1 0 0 = left
0 0 1 0 = forward
0 0 0 1 = back
Reduce the number of input sensors (and corresponding input neurons) to begin with, down to 3 or 5. This will simplify things so you can understand what's going on. Later you can build back up to 24 inputs.
Neural networks often get stuck in local minima during training, that could be why your error is static. Increasing the momentum can help avoid this.
Your learning rate looks quite high. Try 0.1, but play around with these values. Every problem is different and there are no values guaranteed to work.

My neural network forgets the last training when I try to teach next set of training inputs

Im learning(started today) neural networks and could finish a 2x2x1 network(forward data feeding and backward error propagated) that can learn AND operation for one set of inputs. It also dodges any local minimums using randomized parameters. My first source for this is: http://www.codeproject.com/Articles/14342/Designing-And-Implementing-A-Neural-Network-Librar
The problem is: it learns 0 AND 0 using inputs (0,0) but when I give (0,1) it forgets 0 AND 0 then learns 0 AND 1. Is this a general newbie bug?
What I tried:
loop for 10000 times
learn 0 and 0
end loop
loop for 10000 times
learn 0 and 1 (forgets 0 and 0)
end loop
loop for 10000 times
learn 1 and 0 (forgets 0 and 1)
end loop
loop for 10000 times
learn 1 and 1 (forgets 1 and 0)
end loop
only one set is learned
fail
Trial 2:
loop for 10000 times
learn 0 and 0
learn 0 and 1
learn 1 and 0
learn 1 and 1
end loop
gives same result for all input combinations.
fail.
Activation function for each neuron: hyperbolic tangent
2x2 structure: all-pairs
2x1 structure: all-pairs
Randomized learning rate: yes, small enough to keep far from explosive iteration (per iteration)
Randomized bias per neuron: yes, between -0.5 and +0.5 (just at start)
Randomized weighting: yes, between -0.5 and +0.5 (just at start)
Edit: Bias and weight updates are done for all-pairs of hidden and output layers.
Edit: All neurons(hidden+output) use same activation function.
Without specific code it is hard to say for sure, but I think the issue is that you are only giving it one case to learn at a time. You should give it a matrix of your different learning examples, with an expected result vector. Then, when you update your weights and biases, you are finding the values that minimize the error between your network output for all cases, and the expected output for all cases.
For an AND gate, your input would be (in MATLAB code, not sure what language you are using but that syntax is easy to understand):
input = [0, 0;
0, 1;
1, 0;
1, 1];
And your expected output would be:
output = [0;
0;
0;
1];
I think what you are doing now is basically finding the weights and biases that minimize the error between the network output and the expected output for just one input case, and then re-training those weights and biases to minimize the error for the second case, then the third, then the fourth. If you put them in arrays like this it should minimize the overall error for all cases. This is just my best guess though without any code to go on.