How can I resolve table names to Parquet on the fly? - scala

I need to run Spark SQL queries with my own custom correspondence from table names to Parquet data. Reading Parquet data to DataFrames with sqlContext.read.parquet and registering the DataFrames with df.registerTempTable isn't cutting it for my use case, because those calls have to be run before the SQL query, when I might not even know what tables are needed.
Rather than using registerTempTable, I'm trying to write an Analyzer that resolves table names using my own logic. However, I need to be able to resolve an UnresolvedRelation to a LogicalPlan representing Parquet data, but sqlContext.read.parquet gives a DataFrame, not a LogicalPlan.
A DataFrame seems to have a logicalPlan attribute, but that's marked protected[sql]. There's also a ParquetRelation class, but that's private[sql]. That's all I found for ways to get a LogicalPlan.
How can I resolve table names to Parquet with my own logic? Am I even on the right track with Analyzer?

You can actually retrieve the logicalPlan of your DataFrame with
val myLogicalPlan: LogicalPlan = myDF.queryExecution.logical

Related

Avoid loading into table dataframe that is empty

I am creating a process in spark scala within an ETL that checks for some events occurred during the ETL process. I start with an empty dataframe and if events occur this dataframe is filled with information ( a dataframe can't be filled it can only be joined with other dataframes with the same structure ). The thing is that at the end of the process, the dataframe that has been generated is loaded into a table but it can happen that the dataframe ends up being empty because no event has occured and I don't want to load a dataframe that is empty because it has no sense. So, I'm wondering if there is an elegant way to load the dataframe into the table only if it is not empty without using the if condition. Thanks!!
I recommend to create the dataframe anyway; If you don't create a table with the same schema, even if it's empty, your operations/transformations on DF could fail as it could refer to columns that may not be present.
To handle this, you should always create a DataFrame with the same schema, which means the same column names and datatypes regardless if the data exists or not. You might want to populate it with data later.
If you still want to do it your way, I can point a few ideas for Spark 2.1.0 and above:
df.head(1).isEmpty
df.take(1).isEmpty
df.limit(1).collect().isEmpty
These are equivalent.
I don't recommend using df.count > 0 because it is linear in time complexity and you would still have to do a check like df != null before.
A much better solution would be:
df.rdd.isEmpty
Or since Spark 2.4.0 there is also Dataset.isEmpty.
As you can see, whatever you decide to do, there is a check somewhere that you need to do, so you can't really get rid of the if condition - as the sentence implies: if you want to avoid creating an empty dataframe.

Spark Dataset - "edit" parquet file for each row

Context
I am trying to use Spark/Scala in order to "edit" multiple parquet files (potentially 50k+) efficiently. The only edit that needs to be done is deletion (i.e. deleting records/rows) based on a given set of row IDs.
The parquet files are stored in s3 as a partitioned DataFrame where an example partition looks like this:
s3://mybucket/transformed/year=2021/month=11/day=02/*.snappy.parquet
Each partition can have upwards of 100 parquet files that each are between 50mb and 500mb in size.
Inputs
We are given a spark Dataset[MyClass] called filesToModify which has 2 columns:
s3path: String = the complete s3 path to a parquet file in s3 that needs to be edited
ids: Set[String] = a set of IDs (rows) that need to be deleted in the parquet file located at s3path
Example input dataset filesToModify:
s3path
ids
s3://mybucket/transformed/year=2021/month=11/day=02/part-1.snappy.parquet
Set("a", "b")
s3://mybucket/transformed/year=2021/month=11/day=02/part-2.snappy.parquet
Set("b")
Expected Behaviour
Given filesToModify I want to take advantage of parallelism in Spark do the following for each row:
Load the parquet file located at row.s3path
Filter so that we exclude any row whose id is in the set row.ids
Count the number of deleted/excluded rows per id in row.ids (optional)
Save the filtered data back to the same row.s3path to overwrite the file
Return the number of deleted rows (optional)
What I have tried
I have tried using filesToModify.map(row => deleteIDs(row.s3path, row.ids)) where deleteIDs is looks like this:
def deleteIDs(s3path: String, ids: Set[String]): Int = {
import spark.implicits._
val data = spark
.read
.parquet(s3path)
.as[DataModel]
val clean = data
.filter(not(col("id").isInCollection(ids)))
// write to a temp directory and then upload to s3 with same
// prefix as original file to overwrite it
writeToSingleFile(clean, s3path)
1 // dummy output for simplicity (otherwise it should correspond to the number of deleted rows)
}
However this leads to NullPointerException when executed within the map operation. If I execute it alone outside of the map block then it works but I can't understand why it doesn't inside it (something to do with lazy evaluation?).
You get a NullPointerException because you try to retrieve your spark session from an executor.
It is not explicit, but to perform spark action, your DeleteIDs function needs to retrieve active spark session. To do so, it calls method getActiveSession from SparkSession object. But when called from an executor, this getActiveSession method returns None as stated in SparkSession's source code:
Returns the default SparkSession that is returned by the builder.
Note: Return None, when calling this function on executors
And thus NullPointerException is thrown when your code starts using this None spark session.
More generally, you can't recreate a dataset and use spark transformations/actions in transformations of another dataset.
So I see two solutions for your problem:
either to rewrite DeleteIDs function's code without using spark, and modify your parquet files by using parquet4s for instance.
or transform filesToModify to a Scala collection and use Scala's map instead of Spark's one.
s3path and ids parameters that are passed to deleteIDs are not actually strings and sets respectively. They are instead columns.
In order to operate over these values you can instead create a UDF that accepts columns instead of intrinsic types, or you can collect your dataset if it is small enough so that you can use the values in the deleteIDs function directly. The former is likely your best bet if you seek to take advantage of Spark's parallelism.
You can read about UDFs here

Spark : Dynamic generation of the query based on the fields in s3 file

Oversimplified Scenario:
A process which generates monthly data in a s3 file. The number of fields could be different in each monthly run. Based on this data in s3,we load the data to a table and we manually (as number of fields could change in each run with addition or deletion of few columns) run a SQL for few metrics.There are more calculations/transforms on this data,but to have starter Im presenting the simpler version of the usecase.
Approach:
Considering the schema-less nature, as the number of fields in the s3 file could differ in each run with addition/deletion of few fields,which requires manual changes every-time in the SQL, Im planning to explore Spark/Scala, so that we can directly read from s3 and dynamically generate SQL based on the fields.
Query:
How I can achieve this in scala/spark-SQL/dataframe? s3 file contains only the required fields from each run.Hence there is no issue reading the dynamic fields from s3 as it is taken care by dataframe.The issue is how can we generate SQL dataframe-API/spark-SQL code to handle.
I can read s3 file via dataframe and register the dataframe as createOrReplaceTempView to write SQL, but I dont think it helps manually changing the spark-SQL, during addition of a new field in s3 during next run. what is the best way to dynamically generate the sql/any better ways to handle the issue?
Usecase-1:
First-run
dataframe: customer,1st_month_count (here dataframe directly points to s3, which has only required attributes)
--sample code
SELECT customer,sum(month_1_count)
FROM dataframe
GROUP BY customer
--Dataframe API/SparkSQL
dataframe.groupBy("customer").sum("month_1_count").show()
Second-Run - One additional column was added
dataframe: customer,month_1_count,month_2_count) (here dataframe directly points to s3, which has only required attributes)
--Sample SQL
SELECT customer,sum(month_1_count),sum(month_2_count)
FROM dataframe
GROUP BY customer
--Dataframe API/SparkSQL
dataframe.groupBy("customer").sum("month_1_count","month_2_count").show()
Im new to Spark/Scala, would be helpful if you can provide the direction so that I can explore further.
It sounds like you want to perform the same operation over and over again on new columns as they appear in the dataframe schema? This works:
from pyspark.sql import functions
#search for column names you want to sum, I put in "month"
column_search = lambda col_names: 'month' in col_names
#get column names of temp dataframe w/ only the columns you want to sum
relevant_columns = original_df.select(*filter(column_search, original_df.columns)).columns
#create dictionary with relevant column names to be passed to the agg function
columns = {col_names: "sum" for col_names in relevant_columns}
#apply agg function with your groupBy, passing in columns dictionary
grouped_df = original_df.groupBy("customer").agg(columns)
#show result
grouped_df.show()
Some important concepts can help you to learn:
DataFrames have data attributes stored in a list: dataframe.columns
Functions can be applied to lists to create new lists as in "column_search"
Agg function accepts multiple expressions in a dictionary as explained here which is what I pass into "columns"
Spark is lazy so it doesn't change data state or perform operations until you perform an action like show(). This means writing out temporary dataframes to use one element of the dataframe like column as I do is not costly even though it may seem inefficient if you're used to SQL.

Datatype conversion of Parquet using spark sql - Dynamically without specify a column name explicityly

I am looking for a way to handle the data type conversion dynamically. SparkDataframes , i am loading the data into a Dataframe using a hive SQL and storing into dataframe and then writing to a parquet file. Hive is unable to read some of the data types and i wanted to convert the decimal datatypes to Double . Instead of specifying a each column name separately Is there any way we can dynamically handle the datatype. Lets say in my dataframe i have 50 columns out of 8 are decimals and need to convert all 8 of them to Double datatype Without specify a column name. can we do that directly?
There is no direct way to do this convert data type here are some ways,
Either you have to cast those columns in hive query .
or
Create /user case class of data types you required and populate data and use it to generate parquet.
or
you can read data type from hive query meta and use dynamic code to get case one or case two to get. achieved
There are two options:
1. Use the schema from the dataframe and dynamically generate query statement
2. Use the create table...select * option with spark sql
This is already answered and this post has details, with code.

How to read a parquet file with lots of columns to a Dataset without a custom case class?

I want to use datasets instead of dataframes.
I'm reading a parquet file and want to infer the types directly:
val df: Dataset[Row] = spark.read.parquet(path)
I don't want Dataset[Row] but a Dataset.
I know I can do something like:
val df= spark.read.parquet(path).as[myCaseClass]
but, my data has many columns! so, if I can avoid writing a case class it would be great!
Why do you want to work with a Dataset? I think it's because you will have not only the schema for free (which you have with the result DataFrame anyway) but because you will have a type-safe schema.
You need to have an Encoder for your dataset and to have it you need a type that would represent your dataset and hence the schema.
Either you select your columns to a reasonable number and use as[MyCaseClass] or you should accept what DataFrame offers.