I am trying to convert a csv file to a dataframe in Spark 1.5.2 with Scala without the use of the library databricks, as it is a community project and this library is not available. My approach was the following:
var inputPath = "input.csv"
var text = sc.textFile(inputPath)
var rows = text.map(line => line.split(",").map(_.trim))
var header = rows.first()
var data = rows.filter(_(0) != header(0))
var df = sc.makeRDD(1 to data.count().toInt).map(i => (data.take(i).drop(i-1)(0)(0), data.take(i).drop(i-1)(0)(1), data.take(i).drop(i-1)(0)(2), data.take(i).drop(i-1)(0)(3), data.take(i).drop(i-1)(0)(4))).toDF(header(0), header(1), header(2), header(3), header(4))
This code, even though it is quite a mess, works without returning any error messages. The problem comes when trying to display the data inside dfin order to verify the correctness of this method and later try to do some queries in df. The error code I am getting after executing df.show() is SPARK-5063. My questions are:
1) Why is it not possible to print the content of df?
2) Is there any other more straightforward method to convert a csv to a dataframe in Spark 1.5.2 without using the library databricks?
For spark 1.5.x can be used code snippet below to convert input into DF
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the DataClass interface with 5 fields.
case class DataClass(id: Int, name: String, surname: String, bdate: String, address: String)
// Create an RDD of DataClass objects and register it as a table.
val peopleData = sc.textFile("input.csv").map(_.split(",")).map(p => DataClass(p(0).trim.toInt, p(1).trim, p(2).trim, p(3).trim, p(4).trim)).toDF()
peopleData.registerTempTable("dataTable")
val peopleDataFrame = sqlContext.sql("SELECT * from dataTable")
peopleDataFrame.show()
Spark 1.5
You can create like this:
SparkSession spark = SparkSession
.builder()
.appName("RDDtoDF_Updated")
.master("local[2]")
.config("spark.some.config.option", "some-value")
.getOrCreate();
StructType schema = DataTypes
.createStructType(new StructField[] {
DataTypes.createStructField("eid", DataTypes.IntegerType, false),
DataTypes.createStructField("eName", DataTypes.StringType, false),
DataTypes.createStructField("eAge", DataTypes.IntegerType, true),
DataTypes.createStructField("eDept", DataTypes.IntegerType, true),
DataTypes.createStructField("eSal", DataTypes.IntegerType, true),
DataTypes.createStructField("eGen", DataTypes.StringType,true)});
String filepath = "F:/Hadoop/Data/EMPData.txt";
JavaRDD<Row> empRDD = spark.read()
.textFile(filepath)
.javaRDD()
.map(line -> line.split("\\,"))
.map(r -> RowFactory.create(Integer.parseInt(r[0]), r[1].trim(),Integer.parseInt(r[2]),
Integer.parseInt(r[3]),Integer.parseInt(r[4]),r[5].trim() ));
Dataset<Row> empDF = spark.createDataFrame(empRDD, schema);
empDF.groupBy("edept").max("esal").show();
Using Spark with Scala.
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
var hiveCtx = new HiveContext(sc)
var inputPath = "input.csv"
var text = sc.textFile(inputPath)
var rows = text.map(line => line.split(",").map(_.trim)).map(a => Row.fromSeq(a))
var header = rows.first()
val schema = StructType(header.map(fieldName => StructField(fieldName.asInstanceOf[String],StringType,true)))
val df = hiveCtx.createDataframe(rows,schema)
This should work.
But for creating dataframe, would recommend you to use Spark-CSV.
Related
I am trying to create an empty dataframe an using it on a function but I am having the following error all time:
Required: DataFrame
Found: Dataset[DataFrame]
This is how I am doing it:
//Create empty DataFrame
val schema = StructType(
StructField("g", StringType, true) ::
StructField("tg", StringType, true) :: Nil)
var df1 = spark.createDataFrame(spark.sparkContext
.emptyRDD[Row], schema)
//or
var df1 = spark.emptyDataFrame
Then I try to use it calling a functions as you can see here:
df1 = kvrdd1_toDF.map(x => function1(x, df1))
And this is the function:
def function1(input: org.apache.spark.sql.Row, df: DataFrame): DataFrame = {
val v1 = spark.sparkContext.parallelize(Seq("g","tg"))
var df3 = v1.toDF("g","tg")
if (df.take(1).isEmpty){
df3 = Seq((input.get(2), "nn")).toDF("g", "tg")
} else {
df3 = df3.union(df)
}
df3
}
What am I doing wrong?
You have a DataFrame which is an alias for Dataset[Row]. You map that Row to a DataFrame so that's how you end up with a Dataset[DataFrame]. I don't know what you are trying to do but it will never work. The functions (and all its dependencies) you use to map the contents of a Dataset are serialized and distributed over your spark cluster. You can't use another DataFrame or a SparkSession or SparkContext in such a function.
I am kind of newbie to big data world. I have a initial CSV which has a data size of ~40GB but in some kind of shifted order. I mean if you see initial CSV, for Jenny there is no age, so sex column value is shifted to age and remaining column value keeps shifting till the last element in the row.
I want clean/process this CVS using dataframe with Spark in Scala. I tried quite a few solution with withColumn() API and all, but nothing worked for me.
If anyone can suggest me some sort of logic or API available which is out there to solve this in a cleaner way. I might not need proper solution but pointers will also do. Help much appreciated!!
Initial CSV/Dataframe
Required CSV/Dataframe
EDIT:
This is how I'm reading the data:
val spark = SparkSession .builder .appName("SparkSQL")
.master("local[*]") .config("spark.sql.warehouse.dir", "file:///C:/temp")
.getOrCreate()
import spark.implicits._
val df = spark.read.option("header", true").csv("path/to/csv.csv")
This pretty much looks like the data is flawed. To handle this, I would suggest reading each line of the csv file as a single string and the applying a map() function to handle the data
case class myClass(name: String, age: Integer, sex: String, siblings: Integer)
val myNewDf = myDf.map(row => {
val myRow: String = row.getAs[String]("MY_SINGLE_COLUMN")
val myRowValues = myRow.split(",")
if (4 == myRowValues.size()) {
//everything as expected
return myClass(myRowValues[0], myRowValues[1], myRowValues[2], myRowValues[3])
} else {
//do foo to guess missing values
}
}
As in your case Data is not properly formatted. To handle this first data has to be cleansed, i.e all rows of CSV should have same Schema or same no of delimiter/columns.
Basic approach to do this in spark could be:
Load data as Text
Apply map operation on loaded DF/DS to clean it
Create Schema manually
Apply Schema on the cleansed DF/DS
Sample Code
//Sample CSV
John,28,M,3
Jenny,M,3
//Sample Code
val schema = StructType(
List(
StructField("name", StringType, nullable = true),
StructField("age", IntegerType, nullable = true),
StructField("sex", StringType, nullable = true),
StructField("sib", IntegerType, nullable = true)
)
)
import spark.implicits._
val rawdf = spark.read.text("test.csv")
rawdf.show(10)
val rdd = rawdf.map(row => {
val raw = row.getAs[String]("value")
//TODO: Data cleansing has to be done.
val values = raw.split(",")
if (values.length != 4) {
s"${values(0)},,${values(1)},${values(2)}"
} else {
raw
}
})
val df = spark.read.schema(schema).csv(rdd)
df.show(10)
You can try to define a case class with Optional field for age and load your csv with schema directly into a Dataset.
Something like that :
import org.apache.spark.sql.{Encoders}
import sparkSession.implicits._
case class Person(name: String, age: Option[Int], sex: String, siblings: Int)
val schema = Encoders.product[Person].schema
val dfInput = sparkSession.read
.format("csv")
.schema(schema)
.option("header", "true")
.load("path/to/csv.csv")
.as[Person]
I don't want to create Dataframe or RDD directly using spark.read method. I want to form a dataframe or RDD from a java resultset (has 5,000,00 records). Appreciate if you provide a diligent solution.
First using RowFactory, we can create rows. Secondly, all the rows can be converted into Dataframe using SQLContext.createDataFrame method. Hope, this will help you too :).
import java.sql.Connection
import java.sql.ResultSet
import org.apache.spark.sql.RowFactory
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Row
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StructType
var resultSet: ResultSet = null
val rowList = new scala.collection.mutable.MutableList[Row]
var cRow: Row = null
//Resultset is created from traditional Java JDBC.
val resultSet = DbConnection.createStatement().execute("Sql")
//Looping resultset
while (resultSet.next()) {
//adding two columns into a "Row" object
cRow = RowFactory.create(resultSet.getObject(1), resultSet.getObject(2))
//adding each rows into "List" object.
rowList += (cRow)
}
val sconf = new SparkConf
sconf.setAppName("")
sconf.setMaster("local[*]")
var sContext: SparkContext = new SparkContext(sConf)
var sqlContext: SQLContext = new SQLContext(sContext)
//creates a dataframe
DF = sqlContext.createDataFrame(sContext.parallelize(rowList ,2), getSchema())
DF.show() //show the dataframe.
def getSchema(): StructType = {
val DecimalType = DataTypes.createDecimalType(38, 10)
val schema = StructType(
StructField("COUNT", LongType, false) ::
StructField("TABLE_NAME", StringType, false) :: Nil)
//Returning the schema to define dataframe columns.
schema
}
I want to create parquet file in hdfs and then read it through hive as external table. I'm struck with stage failures in spark-shell while writing parquet files.
Spark Version: 1.5.2
Scala Version: 2.10.4
Java: 1.7
Input file:(employee.txt)
1201,satish,25
1202,krishna,28
1203,amith,39
1204,javed,23
1205,prudvi,23
In Spark-Shell:
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
val employee = sc.textFile("employee.txt")
employee.first()
val schemaString = "id name age"
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types.{StructType, StructField, StringType};
val schema = StructType(schemaString.split(" ").map(fieldName ⇒ StructField(fieldName, StringType, true)))
val rowRDD = employee.map(_.split(",")).map(e ⇒ Row(e(0).trim.toInt, e(1), e(2).trim.toInt))
val employeeDF = sqlContext.createDataFrame(rowRDD, schema)
val finalDF = employeeDF.toDF();
sqlContext.setConf("spark.sql.parquet.compression.codec", "snappy")
var WriteParquet= finalDF.write.parquet("/user/myname/schemaParquet")
When I type the last command I get,
ERROR
SPARK APPLICATION MANAGER
I even tried increasing the executor memory, its still failing.
Also Importantly , finalDF.show() is producing the same error.
So, I believe I have made a logical error here.
Thanks for supporting
The issue here is you are creating a schema with all the fields/columns type defaulted to StringType. But while passing the values in the schema, the value of Id and Age is being converted to Integer as per the code.Hence, throwing the Matcherror while running.
The data types of columns in the schema should match the data type of values being passed to it. Try the below code.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
val employee = sc.textFile("employee.txt")
employee.first()
//val schemaString = "id name age"
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types._;
val schema = StructType(StructField("id", IntegerType, true) :: StructField("name", StringType, true) :: StructField("age", IntegerType, true) :: Nil)
val rowRDD = employee.map(_.split(" ")).map(e ⇒ Row(e(0).trim.toInt, e(1), e(2).trim.toInt))
val employeeDF = sqlContext.createDataFrame(rowRDD, schema)
val finalDF = employeeDF.toDF();
sqlContext.setConf("spark.sql.parquet.compression.codec", "snappy")
var WriteParquet= finalDF.write.parquet("/user/myname/schemaParquet")
This code should run fine.
I have a text file on HDFS and I want to convert it to a Data Frame in Spark.
I am using the Spark Context to load the file and then try to generate individual columns from that file.
val myFile = sc.textFile("file.txt")
val myFile1 = myFile.map(x=>x.split(";"))
After doing this, I am trying the following operation.
myFile1.toDF()
I am getting an issues since the elements in myFile1 RDD are now array type.
How can I solve this issue?
Update - as of Spark 1.6, you can simply use the built-in csv data source:
spark: SparkSession = // create the Spark Session
val df = spark.read.csv("file.txt")
You can also use various options to control the CSV parsing, e.g.:
val df = spark.read.option("header", "false").csv("file.txt")
For Spark version < 1.6:
The easiest way is to use spark-csv - include it in your dependencies and follow the README, it allows setting a custom delimiter (;), can read CSV headers (if you have them), and it can infer the schema types (with the cost of an extra scan of the data).
Alternatively, if you know the schema you can create a case-class that represents it and map your RDD elements into instances of this class before transforming into a DataFrame, e.g.:
case class Record(id: Int, name: String)
val myFile1 = myFile.map(x=>x.split(";")).map {
case Array(id, name) => Record(id.toInt, name)
}
myFile1.toDF() // DataFrame will have columns "id" and "name"
I have given different ways to create DataFrame from text file
val conf = new SparkConf().setAppName(appName).setMaster("local")
val sc = SparkContext(conf)
raw text file
val file = sc.textFile("C:\\vikas\\spark\\Interview\\text.txt")
val fileToDf = file.map(_.split(",")).map{case Array(a,b,c) =>
(a,b.toInt,c)}.toDF("name","age","city")
fileToDf.foreach(println(_))
spark session without schema
import org.apache.spark.sql.SparkSession
val sparkSess =
SparkSession.builder().appName("SparkSessionZipsExample")
.config(conf).getOrCreate()
val df = sparkSess.read.option("header",
"false").csv("C:\\vikas\\spark\\Interview\\text.txt")
df.show()
spark session with schema
import org.apache.spark.sql.types._
val schemaString = "name age city"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName,
StringType, nullable=true))
val schema = StructType(fields)
val dfWithSchema = sparkSess.read.option("header",
"false").schema(schema).csv("C:\\vikas\\spark\\Interview\\text.txt")
dfWithSchema.show()
using sql context
import org.apache.spark.sql.SQLContext
val fileRdd =
sc.textFile("C:\\vikas\\spark\\Interview\\text.txt").map(_.split(",")).map{x
=> org.apache.spark.sql.Row(x:_*)}
val sqlDf = sqlCtx.createDataFrame(fileRdd,schema)
sqlDf.show()
If you want to use the toDF method, you have to convert your RDD of Array[String] into a RDD of a case class. For example, you have to do:
case class Test(id:String,filed2:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
You will not able to convert it into data frame until you use implicit conversion.
val sqlContext = new SqlContext(new SparkContext())
import sqlContext.implicits._
After this only you can convert this to data frame
case class Test(id:String,filed2:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
val df = spark.read.textFile("abc.txt")
case class Abc (amount:Int, types: String, id:Int) //columns and data types
val df2 = df.map(rec=>Amount(rec(0).toInt, rec(1), rec(2).toInt))
rdd2.printSchema
root
|-- amount: integer (nullable = true)
|-- types: string (nullable = true)
|-- id: integer (nullable = true)
A txt File with PIPE (|) delimited file can be read as :
df = spark.read.option("sep", "|").option("header", "true").csv("s3://bucket_name/folder_path/file_name.txt")
I know I am quite late to answer this but I have come up with a different answer:
val rdd = sc.textFile("/home/training/mydata/file.txt")
val text = rdd.map(lines=lines.split(",")).map(arrays=>(ararys(0),arrays(1))).toDF("id","name").show
You can read a file to have an RDD and then assign schema to it. Two common ways to creating schema are either using a case class or a Schema object [my preferred one]. Follows the quick snippets of code that you may use.
Case Class approach
case class Test(id:String,name:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
Schema Approach
import org.apache.spark.sql.types._
val schemaString = "id name"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable=true))
val schema = StructType(fields)
val dfWithSchema = sparkSess.read.option("header","false").schema(schema).csv("file.txt")
dfWithSchema.show()
The second one is my preferred approach since case class has a limitation of max 22 fields and this will be a problem if your file has more than 22 fields!