What does encapsulation do for clearing up the type of a variable or constant? - swift

I'm currently reading through Apple's "Intro to App Development with Swift" student guide. At the end-quiz of chapter 9, "Types", it asks:
When you're reading code and aren't sure of the type of a variable or constant, what's the quickest way to find out?
The answer is:
Rewrite the section of code using different encapsulation.
However, the concept of encapsulation has not been introduced before so I'm rather confused. In the e-book's Glossary, it states:
A language mechanism for restricting access to some of the object components and/or a language construct that facilitates the bundling of data with the methods of operating on that data.
Can anyone explain how this relates to finding out about the type of a variable or constant?
Thanks in advance.

The answer is:
Rewrite the section of code using different encapsulation.
That's a wrong answer. The right answer is "Use Xcode's [Quick Help] inspector."
Can anyone explain how this relates to finding out about the type of a variable or constant?
The suggestion here is that if you rewrite the source to make a private variable public (i.e. change the way it is encapsulated) it would make it easier to find the type of the variable in question.

Related

Do we have to implement copy on write behavior for our custom types?

In Swift, collections are implicitly implemented with copy on write behavior; However, we don't get it for free in our custom types.
My main question is:
Regardless of how to achieve it, is it a good idea to do for our custom types? Why/Why not?
Moreover:
According to this answer, even the built-in types (but not collections) provided from the Swift standard library do not implement it which could be an indication that we don't have to do it. Even so, is there any advantage of doing it?
You do not have to do it, but it can be a worthwhile optimization if you have the resources and need to do so. Ask yourself the following questions:
Is my datatype copied often (i.e. applicability)?
Is it easy enough to implement CoW in reasonably time (i.e. viability)?
Does my application benefit from these optimizations (i.e. return of investment)?
Probably, in most applications it is not necessary and the users will not notice the difference. In some specific cases it might be applicable, but be critical. Remember:
Premature performance optimization is the root of all evil ~ Donald Knuth

Is it a good practice to make an inner (nested) class in swift? [duplicate]

I have a swiftlint warning that bothers me.
warning: Nesting Violation: Types should be nested at most 1 level deep (nesting)
However, the nesting of structs is an established programming technique, and quite a few people advocate it.
Edit:
Indeed #vadian points out the Swift language guide's rule:To nest a type within another type, write its definition within the outer braces of the type it supports. Types can be nested to as many levels as are required.
I am aware it clashes with the use of generics, and that Xcode may become unbearably slow. It actually was (through measuring the slowest compilation spots) the reason why I started looking at this nesting rule.
What is the reason for the lint rule, and what is the good practice in that respect? Please point out the technical reasons, rather than purely opinion-based advice.
Microsoft actually has a page about nested types, and when they are appropriate. While it is not targeted at Swift, it does have some interesting trans-language thoughtbits.
After much searching, all I've found is #jpsim's remark that "the idea behind the nesting rule is to avoid complex interfaces".
Therefore, apart from the compiler issues outlined in my question, which will eventually subside, there seems to not be any technical reason for this rule.

How to find appropriate functions for PureScript?

PureScript have lots of functions available like filter lenth and more. But how can we find the function that we need and its examples with implementation? I am facing problem solving exercises of the book purescript by examples. Any tips how show I go about solving those? Example in the book does not explain everythin.
Really, the most straightforward way would be to use the tooling that comes with the compiler through an editor plugin. You can use ?typehole to get the type of the type hole and get search results for relevant functions.
I also quite often type in a partial identifier and use the completion to look through the implementations, e.g. fil <complete to find various filter definitions.
For all newbie to PureScript who are following PureScript by example book this github link has all the solutions with updated libraries
https://github.com/kvsm/purescript-by-example

Difference between internal and moduleprivate in Swift

I am not able to understand what is the difference between these two keywords in swift3?
If anyone has a link to a good article about this, please share.
There is no difference conceptually; moduleprivate was just a possible alternate name for the same access level that didn't get accepted during discussions about access control modifier naming.
https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20160328/013854.html
The internal modifier is the only one of the two that actually exists in the Swift language, but the two names represent the same behavior.

The evilness of 'var' in C#? [duplicate]

This question already has answers here:
Closed 13 years ago.
Possible Duplicate:
C# 'var' keyword versus explicitly defined variables
EDIT:
For those who are still viewing this, I've completely changed my opinion on var. I think it was largely due to the responses to this topic that I did. I'm an avid 'var' user now, and I think its proponents comments below were absolutely correct in pretty much all cases. I think the thing I like most about var is it REALLY DOES reduce repetition (conforms to DRY), and makes your code considerably cleaner. It supports refactoring (when you need to change the return type of something, you have less code cleanup to deal with, and NO, NOT everyone has a fancy refactoring tool!), and anecdotally, people don't really seem to have a problem not knowing the specific type of a variable up front (its easy enough to "discover" the capabilities of a type on-demand, which is generally a necessity anyway, even if you DO know the name of a type.)
So here's a big applause for the 'var' keyword!!
This is a relatively simple question...more of a poll really. I am a HUGE fan of C#, and have used it for over 8 years, since before .NET was first released. I am a fan of all of the improvements made to the language, including lambda expressions, extension methods, LINQ, and anonymous types. However, there is one feature from C# 3.0 that I feel has been SORELY misused....the 'var' keyword.
Since the release of C# 3.0, on blogs, forums, and yes, even Stackoverflow, I have seen var replace pretty much every variable that has been written! To me, this is a grave misuse of the feature, and leads to very arbitrary code that can have many obfuscated bugs due to the lack in clarity of what type a variable actually is.
There is only a single truly valid use for 'var' (in my opinion at least). What is that valid use, you ask? The only valid use is when you are incapable of knowing the type, and the only instance where that can happen:
When accessing an anonymous type
Anonymous types have no compile-time identity, so var is the only option. It's the only reason why var was added...to support anonymous types.
So...whats your opinion? Given the prolific use of var on blogs, forums, suggested/enforced by tools like ReSharper, etc. many up and coming developers will see it as a completely valid thing.
Do you think var should be used so prolifically?
Do you think var should ever be used for anything other than an anonymous type?
Is it acceptable to use in code posted to blogs to maintain brevity...terseness? (Not sure about the answer this one myself...perhaps with a disclaimer)
Should we, as a community, encourage better use of strongly typed variables to improve code clarity, or allow C# to become more vague and less descriptive?
I would like to know the communities opinions. I see var used a lot, but I have very little idea why, and perhapse there is a good reason (i.e. brevity/terseness.)
var is a splendid idea to help implement a key principle of good programming: DRY, i.e., Don't Repeat Yourself.
VeryComplicatedType x = new VeryComplicatedType();
is bad coding, because it repeats VeryComplicatedType, and the effects are all negative: more verbose and boilerplatey code, less readability, silly "makework" for both the reader and the writer of the code. Because of all this, I count var as a very useful enhancement in C# 3 compared to Java and previous versions of C#.
Of course it can be mildly misused, by using as the RHS an expression whose type is not clear and obvious (e.g., a call to a method whose declaration may be far away) -- such misuse may decrease readability (by forcing the reader to hunt for the method's declaration or ponder deeply about some other subtle expression's type) instead of increasing it. But if you stick to using var to avoid repetition, you'll be in its sweet spot, and no misuse.
I think it should be used in those situations where the type is clearly specified elsewhere in the same statement:
Dictionary<string, List<int>> myHashMap = new Dictionary<string, List<int>>();
is a pain to read. This could be replaced by the following with no loss of clarity:
var myHashMap = new Dictionary<string, List<int>>();
Pop quiz!
What type is this:
var Foo = new string[]{"abc","123","yoda"};
How about this:
var Bar = {"abc","123","yoda"};
It takes me roughly no longer to determine what types those are than with the explicity redundant specification of the type. As a programmer I have no issues with letting a compiler figure out things that are obvious for me. You may disagree.
Cheers.
Never say never. I'm pretty sure there are a bunch of questions where people have expounded their views on var, but here's mine once more.
var is a tool; use it where it's appropriate, and don't use it when it's not. You're right that the only required use of var is when addressing anonymous types, in which case you have no type name to use. Personally, I'd say any other use has to be considered in terms of readability and laziness; specifically, when avoiding use of a cumbersome type name.
var i = 5;
(Laziness)
var list = new List<Customer>();
(Convenience)
var customers = GetCustomers();
(Questionable; I'd consider it acceptable if and only if GetCustomers() returns an IEnumerable)
Read up on Haskell. It's a statically typed language in which you rarely have to state the type of anything. So it uses the same approach as var, as the standard "idiomatic" coding style.
If the compiler can figure something out for you, why write the same thing twice?
A colleague of mine was at first very opposed to var, just as you are, but has now started using it habitually. He was worried it would make programs less self-documenting, but in practice that's caused more by overly long methods.
var MyCustomers = from c in Customers
where c.City="Madrid"
select new { c.Company, c.Mail };
If I need only Company and Mail from Customers collection. It's nonsense define new type with members what I need.
If you feel that giving the same information twice reduces errors (the designers of many web forms that insist you type in your email address twice seem to agree), then you'll probably hate var. If you write a lot of code that uses complicated type specifications then it's a godsend.
EDIT: To exapand this a bit (incase it sounds like I'm not in favour of var):
In the UK (at least at the time I went), it was standard practice to make Computer Science students learn how to program in Standard ML. Like other functional languages it has a type system that puts languages in the C++/Java mould to shame.
Anyway, what I noticed at the time (and heard similar remarks from other students) was that it was a nightmare to get your SML programs to compile because the compiler was so increadibly picky about types, but once the did compile, they almost always ran without error.
This aspect of SML (and other functional languages) seems to be one the questioner sees as a 'good thing' - i.e. that anything that helps the compiler catch more errors at compile time is good.
Now here's the thing with SML: it uses type inference exclusively when assigning. So I don't think type inference can be inherently bad.
I agree with others that var eliminates redundancy. I have decided to use var where it eliminates redundancy as much as possible. I think consistency is important. Choose a style and stick with it through a project.
As Earwicker indicated, there are some functional languages, Haskell being one and F# being another, where such type inference is used much more pervasively -- the C# analogy would be declaring the return types and parameter types of methods as "var", and then having the compiler infer the static type for you. Static and explicit typing are two orthogonal concerns.
In fact, is it even correct to say that use of "var" is dynamic typing? From what I understood, that's what the new "dynamic" keyword in C# 4.0 is for. "var" is for static type inference. Correct me if I am wrong.
I must admit when i first saw the var keyword pop up i was very skeptical.
However it is definitely an easy way to shorten the lines of a new declaration, and i use it all the time for that.
However when i change the type of an underlying method, and accept the return type using var. I do get the occasional run time error. Most are still picked up by the compiler.
The secound issue i run into is when i am not sure what method to use (and i am simply looking through the auto complete). IF i choose the wrong one and expect it to be type FOO and it is type BAR then it takes a while to figure that out.
If i had of literally specified the variable type in both cases it would have saved a bit of frustration.
overall the benefits exceed the problems.
I have to dissent with the view that var reduces redundancy in any meaningful way. In the cases that have been put forward here, type inference can and should come out of the IDE, where it can be applied much more liberally with no loss of readability.