Lagom + akka-http integration - scala

What is the simplest solution to integrate Akka HTTP service with / into Lagom?
I have two services - akkahttp:8000 and lagom:9000, they are serving methods for Angular application. It would be great to have one endpoint for all the services - x:8888 for x:8888/akkahttp and x:8888/lagom.

This problem is often solved by using some kind of reverse proxy server that faces clients and forwards traffic to your Akka HTTP and Lagom services over an internal network.
Popular reverse proxy solutions include:
HAProxy
nginx
AWS Application Load Balancer (for AWS deployments)
Lightbend ConductR is the recommended and supported deployment environment for Lagom and Akka based services. It includes a built-in, HAProxy-based dynamic proxy that supports this kind of configuration.

Related

Why kubernetes uses bost Rest API and gRPC?

why k8s uses RestAPI in NodeStats/PodStats summary, but uses gRPC in CRI( RunPodSandbox/CreateContainer/StartContainer)?
why doesn't k8s use gRPC in the whole project?
Thank you.
Without knowing anything about the internals of k8s, it's reasonable to assume that it would serve generic REST endpoints for services it provides to unknown clients, but would be a gRPC client for other internal k8s services, and possibly serve gRPC to other internal k8s services.
gRPC is certainly more efficient to use for cooperating services, but it would be quite awkward for a random client not fully integrated with k8s to form a gRPC client call, so it uses a simplified REST interface for those external clients.

Which ingress controller should I use to support WebSocket in a AWS k8s cluster deployed by kops?

I have a cluster on AWS installed via kops. Now I need to expose a WebSocket service (with security enabled, the wss://) to the outside world. There are different ingress controllers, nginx, traefik, ELBs, ALBs. Which one is the suggested and:
easy to deploy and config
support http://, https://, ws://, and wss://
In my opinion this question is opinion based and too broad. Please try to avoid such questions as there is not one solution that is the best.
I was able to find plenty resources about nginx and websockets. I do not have production experience with configuring this, but I think you might find this helpful.
NGINX is a popular choice for an Ingress Controller for a variety of
features:
Websocket, which allows you to load balance Websocket applications.
SSL Services, which allows you to load balance HTTPS applications.
Rewrites, which allows you to rewrite the URI of a request before sending it to the application.
Session Persistence (NGINX Plus only), which guarantees that all the requests from the same client are always passed to the same
backend container.
Support for JWTs (NGINX Plus only), which allows NGINX Plus to authenticate requests by validating JSON Web Tokens (JWTs).
The most important part with nginx is the annotation - which specifies which services are Websocket services. Some more information about usage and configuration. Also useful tutorial about configuration of nginx ingress, although it is about GKE it might be useful.

Disadvantages of using eureka for Service Discovery with kubernetes

Context
I am deploying a set of services that are containerised using Docker into AWS. No matter which deployment solution is chosen (e.g. raw EC2/ECS/Elastic Beanstalk/Fargate) we will face the issue of "service discovery".
To name just a few of the options for service discovery that I've considered:
AWS Route 53 Service Registry
Kubernetes
Hashicorp Consul
Spring Cloud Netflix Eureka
Specifics Of My Stack
I am developing Java Spring Boot applications using Spring Cloud with the target deployment environment being AWS.
Given that my stack is Spring based, spring cloud eureka made sense to me while developing locally. It was easy to set up a single node, integrates well with the stack and ecosystem of choice and required very little set up.
Locally, we are using docker compose (not swarm) to deploy services - one of the containers deployed is a single node Eureka service discovery server.
However, when we progress outside of local development and into staging or production environment we are considering options like Kubernetes.
My Own Assessment Of Pros/Cons
AWS Route 53 Service Registry
Requires us to couple code specifically to AWS services. Not a problem per se, we are quite tied in anyway on other parts of the stack (SNS/SQS).
Makes running the stack locally slightly more difficult as it relies on Route 53, I suppose we could open up a certain hosted zone for local development.
AWS native, no managing service registries or extra "moving parts".
Spring Cloud Eureka
Downside is that thus requires us to deploy and manage a high availability service registry cluster and requires more resources. Another "moving part" to manage.
Advantages are that it fits into our stack well (spring ecosystem, spring boot, spring cloud, feign and zuul work well with this). Also can be run locally trivially.
I presume we need to configure the networks and registry zone to ensure that that clients publish their host address rather and docker container internal IP address. e.g. if service A is on host A and wants to talk to service B on host B, service B needs to advertise its EC2 address rather than some internal docker IP.
Questions
If we use Kubernetes for orchestration, are there any disadvantages to using something like Spring Cloud Eureka over the built in service discovery options described here https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
Given Kube provides this, it seems suboptimal to then use eureka deployed using kube to perform discovery. I presume kube can make some optimisations that impact avaialbility and stability that might nit be possible using eureka. e.g kube would know when deploying a new service - eureka will have to rely on heartbeats/health checks and depending on how that is configured (e.g. frequency) this could result in stale records whereas i presume kube might not suffer from this for planned service shutdown/restarts. I guess it still does for unplanned failures such as a host failure or network partition.
Does anyone have any advice on this, do people use services like Kubernetes but use other mechanisms for service discovery rather than those provided by kube. Is there a good reason to do one or the other?
Possible Challenges I Anticipate
We could replace eureka, but relying on Kube to perform discovery will mean that we need to run kube locally to deploy whereas currently we have a simple tiny docker-compose file. Also, I'll have to look at how easy it'll be to ensure that ribbon, zuul and feign play nicely with this.
Currently we have ribbon configured with a eureka client so that service A can server to service B just as "service-b" for example and have ribbon resolve a healthy host via a eureka client. I guess we can configure ribbon to not use eureka and use an external Kube service name which will be resolved by Kube DNS at runtime...
Final Note
Thanks in advance for any contribution or advice. I know this might elicit a primarily opinion focused response. But I am hoping someone can provide objective guidance on when one solution might be preferable to another.
Service discovery is something you get out-of-the-box with Kubernetes. So having another external service in your platform will be another application to maintain, deploy and can be a point of failure. So I would stick with the the service discovery provided by Kubernetes.

Low Level Protocol for Microservice Orchestration

Recently I started working with Microservices, I wrote a library for service discovery using Redis to store every service's url and port number, along with a TTL value for the entry. It turned out to be an expensive approach since for every cross service call to any other service required one call to Redis. Caching didn't seem to be a good idea, since the services won't be up all the times, there can be possible downtimes as well.
So I wanted to write a separate microservice which could take care of the orchestration part. For this I need to figure out a really low level network protocol to take care of the exchange of heartbeats(which would help me figure out if any of the service instance goes unavailable). How do applications like zookeeperClient, redisClient take care of heartbeats?
Moreover what is the industry's preferred protocol for cross service calls?
I have been calling REST Api's over HTTP and eliminated every possibility of Joins across different collections.
Is there a better way to do this?
Thanks.
I think the term "Orchestration" is not good for what you are asking. From what I've encountered so far in microservices world the term "Orchestration" is used when a complex business process is involved and not for service discovery. What you need is a Service registry combined with a Load balancer. You can find here all the information you need. Here are some relevant extras that great article:
There are two main service discovery patterns: client‑side discovery and server‑side discovery. Let’s first look at client‑side discovery.
The Client‑Side Discovery Pattern
When using client‑side discovery, the client is responsible for determining the network locations of available service instances and load balancing requests across them. The client queries a service registry, which is a database of available service instances. The client then uses a load‑balancing algorithm to select one of the available service instances and makes a request.
The network location of a service instance is registered with the service registry when it starts up. It is removed from the service registry when the instance terminates. The service instance’s registration is typically refreshed periodically using a heartbeat mechanism.
Netflix OSS provides a great example of the client‑side discovery pattern. Netflix Eureka is a service registry. It provides a REST API for managing service‑instance registration and for querying available instances. Netflix Ribbon is an IPC client that works with Eureka to load balance requests across the available service instances. We will discuss Eureka in more depth later in this article.
The client‑side discovery pattern has a variety of benefits and drawbacks. This pattern is relatively straightforward and, except for the service registry, there are no other moving parts. Also, since the client knows about the available services instances, it can make intelligent, application‑specific load‑balancing decisions such as using hashing consistently. One significant drawback of this pattern is that it couples the client with the service registry. You must implement client‑side service discovery logic for each programming language and framework used by your service clients.
The Server‑Side Discovery Pattern
The client makes a request to a service via a load balancer. The load balancer queries the service registry and routes each request to an available service instance. As with client‑side discovery, service instances are registered and deregistered with the service registry.
The AWS Elastic Load Balancer (ELB) is an example of a server-side discovery router. An ELB is commonly used to load balance external traffic from the Internet. However, you can also use an ELB to load balance traffic that is internal to a virtual private cloud (VPC). A client makes requests (HTTP or TCP) via the ELB using its DNS name. The ELB load balances the traffic among a set of registered Elastic Compute Cloud (EC2) instances or EC2 Container Service (ECS) containers. There isn’t a separate service registry. Instead, EC2 instances and ECS containers are registered with the ELB itself.
HTTP servers and load balancers such as NGINX Plus and NGINX can also be used as a server-side discovery load balancer. For example, this blog post describes using Consul Template to dynamically reconfigure NGINX reverse proxying. Consul Template is a tool that periodically regenerates arbitrary configuration files from configuration data stored in the Consul service registry. It runs an arbitrary shell command whenever the files change. In the example described by the blog post, Consul Template generates an nginx.conf file, which configures the reverse proxying, and then runs a command that tells NGINX to reload the configuration. A more sophisticated implementation could dynamically reconfigure NGINX Plus using either its HTTP API or DNS.
Some deployment environments such as Kubernetes and Marathon run a proxy on each host in the cluster. The proxy plays the role of a server‑side discovery load balancer. In order to make a request to a service, a client routes the request via the proxy using the host’s IP address and the service’s assigned port. The proxy then transparently forwards the request to an available service instance running somewhere in the cluster.
The server‑side discovery pattern has several benefits and drawbacks. One great benefit of this pattern is that details of discovery are abstracted away from the client. Clients simply make requests to the load balancer. This eliminates the need to implement discovery logic for each programming language and framework used by your service clients. Also, as mentioned above, some deployment environments provide this functionality for free. This pattern also has some drawbacks, however. Unless the load balancer is provided by the deployment environment, it is yet another highly available system component that you need to set up and manage.

Zuul and Apache HTTPD

In my current project we deploy our applications in an application server and provide load balancing via an Apache httpd server deployed in the DMZ. I'm in the early stage of considering the move to Spring Cloud and while studying it, I came across Zuul as an API Gateway providing reverse proxing, routing and load balancing. Here are my questions:
1) Is Zuul a replacement for an httpd server for the functions described above? (there are probably other functions that the httpd server might supply that Zuul can't, but I'd like to keep the answers limited to reverse proxy, routing and load balancing if possible)
2) Is it redundant to have Zuul front-ended by an httpd server? Or are there benefits of doing this?
Thank you in advance for your answers.