MDQueryGetResultAtIndex and UnsafeRawPointer in Swift 3 - swift

I'm having trouble exploring the results of a Spotlight search in Swift 3 using MDQuery. I expect MDQueryGetResultAtIndex to yield an MDItem, and in C/Objective-C, that assumption works, and I can call MDItemCopyAttribute on it to explore the item. Here, for example, I successfully get the pathname of a found item:
MDItemRef item = (MDItemRef)MDQueryGetResultAtIndex(q,i);
CFStringRef path = MDItemCopyAttribute(item,kMDItemPath);
But in Swift 3, MDQueryGetResultAtIndex returns an UnsafeRawPointer! (it's a pointer-to-void in C). To get past that, I've tried, for example:
if let item = MDQueryGetResultAtIndex(q, 0) {
let ptr = item.bindMemory(to: MDItem.self, capacity: 1)
let path = MDItemCopyAttribute(ptr.pointee, kMDItemPath)
}
but that crashes, and logging shows that ptr.pointee is an NSAtom. It is quite evident that my personal UnsafeRawPointer mojo is not working (and to be frank I've always found this confusing).
How would I transform this UnsafeRawPointer into something I can successfully call MDItemCopyAttribute on?
Alternatives
I can get over this hump by putting my Objective-C code into an Objective-C helper object and calling it from Swift; but I'd like to write a pure Swift solution.
Similarly, I could probably rewrite my code to use the higher-level NSMetadataQuery, and I may well do so; but my original Objective-C code using the lower-level MDQueryRef works fine, so now I'm curious how to turn it directly into Swift.
Complete code for those who would like to try this at home:
let s = "kMDItemDisplayName == \"test\"" // you probably have one somewhere
let q = MDQueryCreate(nil, s as CFString, nil, nil)
MDQueryExecute(q, CFOptionFlags(kMDQuerySynchronous.rawValue))
let ct = MDQueryGetResultCount(q)
if ct > 0 {
if let item = MDQueryGetResultAtIndex(q, 0) {
// ...
}
}

The problem in your code
if let item = MDQueryGetResultAtIndex(q, 0) {
let ptr = item.bindMemory(to: MDItem.self, capacity: 1)
let path = MDItemCopyAttribute(ptr.pointee, kMDItemPath)
}
is that the UnsafeRawPointer is interpreted as a pointer to an
MDItem reference and then dereferenced in ptr.pointee, but
the raw pointer is the MDItem reference, so it is dereferenced
once too often.
The "shortest" method to convert the raw pointer to an MDItem reference
is unsafeBitCast:
let item = unsafeBitCast(rawPtr, to: MDItem.self)
which is the direct analogue of an (Objective-)C cast.
You can also use the Unmanaged methods
to convert the raw pointer to an unmanaged reference and from there
to a managed reference (compare How to cast self to UnsafeMutablePointer<Void> type in swift):
let item = Unmanaged<MDItem>.fromOpaque(rawPtr).takeUnretainedValue()
This looks a bit more complicated but perhaps expresses the intention
more clearly. The latter approach works also with (+1) retained
references (using takeRetainedValue()).
Self-contained example:
import CoreServices
let queryString = "kMDItemContentType = com.apple.application-bundle"
if let query = MDQueryCreate(kCFAllocatorDefault, queryString as CFString, nil, nil) {
MDQueryExecute(query, CFOptionFlags(kMDQuerySynchronous.rawValue))
for i in 0..<MDQueryGetResultCount(query) {
if let rawPtr = MDQueryGetResultAtIndex(query, i) {
let item = Unmanaged<MDItem>.fromOpaque(rawPtr).takeUnretainedValue()
if let path = MDItemCopyAttribute(item, kMDItemPath) as? String {
print(path)
}
}
}
}

Related

Swift 5.0: 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(...)

I previously used this code in Swift 4.2 to generate an id:
public static func generateId() throws -> UInt32 {
let data: Data = try random(bytes: 4)
let value: UInt32 = data.withUnsafeBytes { $0.pointee } // deprecated warning!
return value // + some other stuff
}
withUnsafeBytes is deprecated on Swift 5.0. How can I solve this?
In Swift 5 the withUnsafeBytes() method of Data calls the closure with an (untyped) UnsafeRawBufferPointer, and you can load() the value from the raw memory:
let value = data.withUnsafeBytes { $0.load(as: UInt32.self) }
(compare How to use Data.withUnsafeBytes in a well-defined manner? in the Swift forum). Note that this requires that the memory is aligned on a 4-byte boundary. For alternatives see round trip Swift number types to/from Data.
Note also that as of Swift 4.2 you can create a random 32-bit integer simply using the new Random API:
let randomId = UInt32.random(in: .min ... .max)
On Xcode 10.2, Swift 5, using $0.load(as:) didn't work for me, both when reading from the pointer or writing to it.
Instead, using $0.baseAddress?.assumingMemoryBound(to:) seems to work well.
Example reading from the pointer buffer (code is unrelated to the question):
var reachability: SCNetworkReachability?
data.withUnsafeBytes { ptr in
guard let bytes = ptr.baseAddress?.assumingMemoryBound(to: Int8.self) else {
return
}
reachability = SCNetworkReachabilityCreateWithName(nil, bytes)
}
Example writing to the buffer pointer (code is unrelated to the question):
try outputData.withUnsafeMutableBytes { (outputBytes: UnsafeMutableRawBufferPointer) in
let status = CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2),
passphrase,
passphrase.utf8.count,
salt,
salt.utf8.count,
CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA1),
rounds,
outputBytes.baseAddress?.assumingMemoryBound(to: UInt8.self),
kCCKeySizeAES256)
guard status == kCCSuccess else {
throw Error.keyDerivationError
}
}
The code from the question would look like:
let value = data.withUnsafeBytes {
$0.baseAddress?.assumingMemoryBound(to: UInt32.self)
}
In cases where the 'withUnsafeBytes' is deprecated: use withUnsafeBytes<R>(…) warning persists, it seems like the compiler can get confused when the closure has only one line. Making the closure have two or more lines might remove the ambiguity.
One more way to fix this warning to use bindMemory(to:).
var rawKey = Data(count: rawKeyLength)
let status = rawKey.withUnsafeMutableBytes { rawBytes -> Int32 in
guard let rawBytes = rawBytes.bindMemory(to: UInt8.self).baseAddress else {
return Int32(kCCMemoryFailure)
}
return CCSymmetricKeyUnwrap(alg, ivBytes, iv.count, keyBytes, key.count, wrappedKeyBytes, wrappedKey.count, rawBytes, &rawKeyLength)
}
I got this error as I was trying to figure out a compression stream tutorial. To get it to work, I added a step of converting the raw buffer pointer to a UnsafePointer
Original code from a tutorial I was working on.
--> where input: Data
--> where stream: compression_stream
//Method that shows the deprecation alert
return input.withUnsafeBytes { (srcPointer: UnsafePointer<UInt8>) in
//holder
var output = Data()
//Source and destination buffers
stream.src_ptr = srcPointer //UnsafePointer<UInt8>
stream.src_size = input.count
… etc.
}
Code with a conversion to make the above code work with a valid method
return input.withUnsafeBytes { bufferPtr in
//holder
var output = Data()
//Get the Raw pointer at the initial position of the UnsafeRawBuffer
let base: UnsafeRawPointer? = bufferPtr.baseAddress
//Unwrap (Can be combined with above, but kept it separate for clarity)
guard let srcPointer = base else {
return output
}
//Bind the memory to the type
let count = bufferPtr.count
let typedPointer: UnsafePointer<UInt8> = srcPointer.bindMemory(to: UInt8.self, capacity: count)
// Jump back into the original method
stream.src_ptr = typedPointer //UnsafePointer<UInt8>
}

Swift UnsafeMutablePointer: Must I call deinitialize before deallocate?

Given an instance of UnsafeMutablePointer, what's the point of calling deinitialize(count:) right before deallocate(capacity:)?
Can't you just call deallocate(capacity:)?
I saw this when reading the section "Using Typed Pointers" of the article Unsafe Swift: Using Pointers And Interacting With C on raywenderlich.com.
The article contains the code below, which you can add to a new playground in Xcode.
let count = 2
let stride = MemoryLayout<Int>.stride
let alignment = MemoryLayout<Int>.alignment
let byteCount = stride * count
do {
print("Typed pointers")
let pointer = UnsafeMutablePointer<Int>.allocate(capacity: count)
pointer.initialize(to: 0, count: count)
defer {
pointer.deinitialize(count: count)
pointer.deallocate(capacity: count)
}
pointer.pointee = 42
pointer.advanced(by: 1).pointee = 6
pointer.pointee
pointer.advanced(by: 1).pointee
let bufferPointer = UnsafeBufferPointer(start: pointer, count: count)
for (index, value) in bufferPointer.enumerated() {
print("value \(index): \(value)")
}
}
The article explains below the code, if you keep reading.
Update: as noted by user atrick in the comments below, deinitialization is only required for non-trivial types. That said, including deinitialization is a good way to future proof your code in case you change to something non-trivial. Also, it usually doesn’t cost anything since the compiler will optimize it out.

Cannot convert value of type 'NSRange'(aka'_NSRange') to expected argument type 'Range<Data.Index>' (aka 'Range<int>

there. I am a beginner in Swift and am trying to convert an older program to Swift3. I´ve managed to fix a bunch of errors, but I cannot get this function to work.
fileprivate func extractEntitlements(_ entitlementData: Data) -> NSDictionary? {
var originalEntitlementsData = entitlementData
let xmlStart = "<?xml".data(using: String.Encoding.ascii, allowLossyConversion: true)
let bytes = (originalEntitlementsData as NSData).bytes
for i in 0...(originalEntitlementsData.count - xmlStart!.count) {
if memcmp((xmlStart! as NSData).bytes, bytes + i, Int(xmlStart!.count)) == 0 {
let end = originalEntitlementsData.count - i
**originalEntitlementsData = originalEntitlementsData.subdata(in: NSMakeRange(i, end))**
break;
}
}
return NSString(data: originalEntitlementsData, encoding: String.Encoding.ascii.rawValue)?.propertyList() as? NSDictionary
}
Here is the error I get:
There are a bunch of questions regarding this error, but I am not being successful implementing a solution. Any tips on how I should proceed?
Thanks guys!
Ranges are more complicated and simpler at the same time in swift.
You want subdata(in: start..<end), which makes a Range<Int>, which is the type you need. However, in this case start and end refer to the beginning and end indexes of the range, not the location and length as you pass to NSMakeRange().
As #jrturton already said, subdata(in:) takes a Range<Int> argument,
so it should be
originalEntitlementsData = originalEntitlementsData.subdata(in: i..<i+end)
in your case. But note that all the conversions to NSData, taking
the .bytes, explicit loop and memcmp are not needed if you
take advantage of the existing range(of:) method of Data:
var originalEntitlementsData = entitlementData
let xmlStart = "<?xml".data(using: .utf8)!
if let range = originalEntitlementsData.range(of: xmlStart) {
originalEntitlementsData = originalEntitlementsData.subdata(in: range.lowerBound..<originalEntitlementsData.endIndex)
// Alternatively:
// originalEntitlementsData.removeSubrange(0..<range.lowerBound)
}

PMCreateSession not creating print session

Trying to get printable rect for OS X app. Seems to involve creating a session, then a page format, validating the format, etc. Code compiles, but getting a status of -50 from PMCreateSession. Am I declaring printSession improperly? Normally don't have to deal so much with UnsafeMutablePointers.
Thanks!
let printSession: UnsafeMutablePointer<PMPrintSession> = nil
let pmPageFormat: UnsafeMutablePointer<PMPageFormat> = nil
var status = PMCreateSession(printSession)
status = PMCreatePageFormat(pmPageFormat)
status = PMSessionDefaultPageFormat(printSession.memory, pmPageFormat.memory)
let changed: UnsafeMutablePointer<DarwinBoolean> = nil
status = PMSessionValidatePageFormat(printSession.memory, pmPageFormat.memory, changed)
changed.destroy()
var pRect = PMRect()
status = PMGetAdjustedPageRect(pmPageFormat.memory, &pRect)
Swift.print("pRect \(pRect)")
status = PMRelease(pmPageFormat)
status = PMRelease(printSession)
Am I declaring printSession improperly?
One could acquire a PMPrintSession as follows:
// create a C Null pointer of type PMPrintSession
let printSession = unsafeBitCast(0, to: PMPrintSession.self)
// pass by & converts PMPrintSession to UnsafeMutablePointer<PMPrintSession>
PMCreateSession(&printSession)
…
// recast printSession to release memory
PMRelease( PMObject(printSession) )
Alternately, a PMPrintSession can be accessed from the Cocoa NSPrintInfo:
let printInfo = NSPrintInfo.shared()
let printSession = PMPrintSession(printInfo.pmPrintSession())
Normally don't have to deal so much with UnsafeMutablePointers
For information more information on using an UnsafeMutablePointer see StackOverflow "How to use UnsafeMutablePointer in Swift?"
For a complete example of using Core Printing with Swift see 004.42Apple_CorePrintingExample on GitHub.

Modifying struct instance using call to name in function parameter

I am attempting to use Parse to call up some variables and put them into a struct that is already initialized. The calling of the variables is happening smoothly and the data is available, but the inputing of the class into the function is not happening.
'unit' is a struct that has the name, hp, attack, etc. variables contained within it.
Is it not possible to pass along an instance of a struct and modify it's values like this? It would save me a lot of copy-pasting code to do it this way.
Thanks for your help!
func fetchStats(name: String, inout nameOfClass: unit) {
var unitStatArray = []
let query = PFQuery(className: "UnitStats")
query.whereKey("name", equalTo: name)
query.findObjectsInBackgroundWithBlock{(objects:[PFObject]?, error: NSError?)->Void in
if (error == nil && objects != nil){ unitStatArray = objects! }
nameOfClass.name = "\(unitStatArray[0].objectForKey("name")!)"
print("class name is \(nameOfClass.name)")
print("cannon name is \(cannon.name)")
nameOfClass.hitPoints = unitStatArray[0].objectForKey("hitPoints") as! Double
nameOfClass.hitPointsMax = unitStatArray[0].objectForKey("hitPointsMax") as! Double
nameOfClass.attack = unitStatArray[0].objectForKey("attack") as! Double
nameOfClass.defense = unitStatArray[0].objectForKey("defense") as! Double
nameOfClass.rangedAttack = unitStatArray[0].objectForKey("rangedAttack") as! Double
nameOfClass.rangedDefense = unitStatArray[0].objectForKey("rangedDefense") as! Double
nameOfClass.cost = unitStatArray[0].objectForKey("cost") as! Int
}
}
fetchStats("3-inch Ordnance Rifle", nameOfClass: &cannon)
This is an attempt to explain what I had in mind when writing my comment above.
Because there's an asynchronous call to findObjectsInBackgroundWithBlock, the inout won't help you here. The idea is to add a callback fetched like this:
func fetchStats(name: String, var nameOfClass: unit, fetched: unit -> ()) {
// your code as above
query.findObjectsInBackgroundWithBlock {
// your code as above plus the following statement:
fetched(nameOfClass)
}
}
This can be called with
fetchStats("3-inch Ordnance Rifle", nameOfClass: cannon) { newNameOfClass in
nameOfClass = newNameOfClass
}
(all of this code has not been tested)
The point is that you understand that your code is asynchronous (I know, I'm repeating myself). After you have called fetchStats you don't know when the callback (here: the assignment nameOfClass = newNameOfClass) will be executed. You cannot assume the assignment has been done after fetchStats has returned.
So whatever you need to do with the changed nameOfClass: the corresponding statements must go into the callback:
fetchStats("3-inch Ordnance Rifle", nameOfClass: cannon) { newNameOfClass in
// do whatever you want with the received newNameOfClass
}
Hope this helps.