The code (written in Octave) is:
x=1:2:5;
y=1:1:3;
z=1:0.1:1.2;
f=[x+y+z,x.^2+z;sin(x.*y.*z),cos(x)];
h=x(2)-x(1);
xFor=x(1:end-1);
dffor=(f(2:end)-f(1:end-1))/h;
f(2)
dffor
The output I get is
Hello World
ans = 0.84147
dffor = -1.07926 2.62926 -2.89423 4.44423 4.77985 -5.54500 13.59500 -12.95817
I do not understand some of the code. What does f(2) evaluate?
I actually want to get the numerical derivative of the matrix with respect to x. I thought this was the method of forward differences. Also, why am I getting a [1x11] matrix as the output for dffor, which is supposed to be the numerical differentiation matrix?
first, f is a 2D matrix in your code (size [2,6]) and I assume you meant to have a vector (size [1,12]).
dffor is indeed the forward diff. and it has 11 elements (rather than 12 as f) because it has the differences between each consequent pair of f: each element is used twice except for the first and last: (10*2 + 1 + 1)/2 = 11.
f(2) is just the second element of f which equals x(2) + y(2) + z(2)
Related
I am new with Octave and I have a problem.I thought the following codes were the same, but they produces different results. What is the difference? Thanks
Octave/Matlab: Difference between e^(-1*z) and exp(-1*z)
g = 1./(1 + e^(-1*z));
g = 1./(1 + exp(-1*z));
Where z is a vector, element or matrix
In Octave
exp(1) equals e where e is Euler's number.
There are 4 operations/functions that are to be noted here:
e^x is same as expm(x) and e.^(x) is same as exp(x).
e^x and expm(m) represent e raise to the matrix x.
e.^(x) and exp(x) represent exponential ex for each element in matrix x.
If x is a scalar then all (e^x, expm(x), e.^x and exp(x)) are mathematically equal.
For your case, z is a matrix and hence you get different results.
In MATLAB,
e is not defined in MATLAB. exp(x) and expm(x) have same definitions in MATLAB as those that are described for Octave above.
PS: e or E are also used for E-notation in both MATLAB and Octave but that's a different thing.
In Octave, it is important to note that e^x and exp(x), where x is a double precision scalar variable, are not necessarily the same.
For instance:
>> a = e ^ 2
a = 7.3891
>> b = exp (2)
b = 7.3891
>> b - a
ans = 8.8818e-16
The reason is that exp (2) uses a dedicated algorithm to compute the exponential function, while e ^ 2 actually calls the function e () to get the value of e, and then squares it:
>> c = realpow (e (), 2)
c = 7.3891
>> c - a
ans = 0
Another reason why e ^ x and exp (x) differ is that they compute completely different things when x is a square matrix, but this has already been discussed in Sardar's answer.
I defined an inline function f that takes as argument a (1,3) vector
a = [3;0.5;1];
b = 3 ;
f = #(x) x*a+b ;
Suppose I have a matrix X of size (N,3). If I want to apply f to each row of X, I can simply write :
f(X)
I verified that f(X) is a (N,1) vector such that f(X)(i) = f(X(i,:)).
Now, if I a add a quadratic term :
f = #(x) x*A*x' + x*a + b ;
the command f(X) raises an error :
Error using +
Matrix dimensions must agree.
Error in #(x) x*A*x' + x*a + b
I guess Matlab is considering the whole matrix X as the input to f. So it does not create a vector with each row, i, being equal to f(X(i,:)). How can I do it ?
I found out that there exist a built-in function rowfun that could help me, but it seems to be available only in versions r2016 (I have version r2015a)
That is correct, and expected.
MATLAB tries to stay close to mathematical notation, and what you are doing (X*A*X' for A 3×3 and X N×3) is valid math, but not quite what you intend to do -- you'll end up with a N×N matrix, which you cannot add to the N×1 matrix x*a.
The workaround is simple, but ugly:
f_vect = #(x) sum( (x*A).*x, 2 ) + x*a + b;
Now, unless your N is enormous, and you have to do this billions of times every minute of every day, the performance of this is more than acceptable.
Iff however this really and truly is your program's bottleneck, than I'd suggest taking a look at MMX on the File Exchange. Together with permute(), this will allow you to use those fast BLAS/MKL operations to do this calculation, speeding it up a notch.
Note that bsxfun isn't going to work here, because that does not support mtimes() (matrix multiplication).
You can also upgrade to MATLAB R2016b, which will have built-in implicit dimension expansion, presumably also for mtimes() -- but better check, not sure about that one.
So I'm trying to implement the Simpson method in Matlab, this is my code:
function q = simpson(x,f)
n = size(x);
%subtracting the last value of the x vector with the first one
ba = x(n) - x(1);
%adding all the values of the f vector which are in even places starting from f(2)
a = 2*f(2:2:end-1);
%adding all the values of the f vector which are in odd places starting from 1
b = 4*f(1:2:end-1);
%the result is the Simpson approximation of the values given
q = ((ba)/3*n)*(f(1) + f(n) + a + b);
This is the error I'm getting:
Error using ==> mtimes
Inner matrix dimensions must agree.
For some reason even if I set q to be
q = f(n)
As a result I get:
q =
0 1
Instead of
q =
0
When I set q to be
q = f(1)
I get:
q =
0
q =
0
I can't explain this behavior, that's probably why I get the error mentioned above. So why does q have two values instead of one?
edit: x = linspace(0,pi/2,12);
f = sin(x);
size(x) returns the size of the array. This will be a vector with all the dimensions of the matrix. There must be at least two dimensions.
In your case n=size(x) will give n=[N, 1], not just the length of the array as you desire. This will mean than ba will have 2 elements.
You can fix this be using length(x) which returns the longest dimension rather than size (or numel(x) or size(x, 1) or 2 depending on how x is defined which returns only the numbered dimension).
Also you want to sum over in a and b whereas now you just create an vector with these elements in. try changing it to a=2*sum(f(...)) and similar for b.
The error occurs because you are doing matrix multiplication of two vectors with different dimensions which isn't allowed. If you change the code all the values should be scalars so it should work.
To get the correct answer (3*n) should also be in brackets as matlab doesn't prefer between / and * (http://uk.mathworks.com/help/matlab/matlab_prog/operator-precedence.html). Your version does (ba/3)*n which is wrong.
In an attempt to speed up for loops (or eliminate all together), I've been trying to pass matrices into functions. I have to use sine and cosine as well. However, when I attempt to find the integral of a matrix where the elements are composed of sines and cosines, it doesn't work and I can't seem to find a way to make it do so.
I have a matrix SI that is composed of sines and cosines with respect to a variable that I have defined using the Symbolic Math Toolbox. As such, it would actually be even better if I could just pass the SI matrix and receive a matrix of values that is the integral of the sine/cosine function at every location in this matrix. I would essentially get a square matrix back. I am not sure if I phrased that very well, but I have the following code below that I have started with.
I = [1 2; 3 4];
J = [5 6; 7 8];
syms o;
j = o*J;
SI = sin(I + j);
%SI(1,1) = sin(5*o + 1)
integral(#(o) o.*SI(1,1), 0,1);
Ideally, I would want to solve integral(#(o) o*SI,0,1) and get a matrix of values. What should I do here?
Given that A, B and C are all N x N matrices, for the moment, let's assume they're all 2 x 2 matrices to make the example I'm illustrating more succinct to understand. Let's also define o as a mathematical symbol based on your comments in your question above.
syms o;
A = [1 2; 3 4];
B = [5 6; 7 8];
C = [9 10; 11 12];
Let's also define your function f according to your comments:
f = o*sin(A + o*B + C)
We thus get:
f =
[ o*sin(5*o + 10), o*sin(6*o + 12)]
[ o*sin(7*o + 14), o*sin(8*o + 16)]
Remember, for each element in f, we take the corresponding elements in A, B and C and add them together. As such, for the first row and first column of each matrix, we have 1, 5 and 9. As such, A + o*B + C for the first row, first column equates to: 1 + 5*o + 9 = 5*o + 10.
Now if you want to integrate, just use the int command. This will find the exact integral, provided that the integral can be solvable in closed form. int also can handle matrices so it will integrate each element in the matrix. You can call it like so:
out = int(f,a,b);
This will integrate f for each element from the lower bound a to the upper bound b. As such, supposing our limits were from 0 to 1 as you said. Therefore:
out = int(f,0,1);
We thus get:
out =
[ sin(15)/25 - sin(10)/25 - cos(15)/5, sin(18)/36 - sin(12)/36 - cos(18)/6]
[ sin(21)/49 - sin(14)/49 - cos(21)/7, sin(24)/64 - sin(16)/64 - cos(24)/8]
Bear in mind that out is defined in the symbolic math toolbox. If you want the actual numerical values, you need to cast the answer to double. Therefore:
finalOut = double(out);
We thus get:
finalOut =
0.1997 -0.1160
0.0751 -0.0627
Obviously, this can generalize for any size M x N matrices, so long as they all share the same dimensions.
Caveat
sin, cos, tan and the other related functions have their units in radians. If you wish for the degrees equivalent, append a d at the end of the function (i.e. sind, cosd, tand, etc.)
I believe this is the answer you're after. Good luck!
I need to create a polynomial of the form:
P(x) = q(1,1) + q(2,2)(x-z(1)) + q(3,3)(x-z(1))(x-z(2)) + --- + q(2n, 2n)(x-z(1))(x-z(2))...(x-z(2n)) NOTE: The indices of the equation have been shifted to accomodate MATLAB.
in MATLAB. Consult this link here specifically slides 15 and 16.
I have the matrix Q filled, so I have the diagonal, and I also have z(1:2n) filled.
I'm having a hard time figuring out a way to create a polynomial that I can graph this polynomial. I've tried to use a for loop to append each term to P(x), but it doesn't operate the way I thought it would.
So far, my code will calculate the coefficients (presented as Q(0,0) -> Q(2n+1, 2n+1) in the problem above) without a problem.
I'm having an issue with the construction of a degree n polynomial of the form described above. Plotting makes more sense now, create a vector x with evaluative values, and then run them through the polynomial "function" and plot the x vector against the resulting vector.
So I just need to create this polynomial.
I would use diag and cumprod to help you accomplish this. First use diag to extract the diagonals of your matrix Q. After, use cumprod to generate a vector of cumulative products.
How cumprod works on a vector is that for each element in the vector, the i'th element collects products from 1 up to the i'th element. As an example, if we had a vector V = [1 2 3 4 5], cumprod(V) would produce [1 2 6 24 120]. The 4th element (as an example) would be 1*2*3*4, representing the products from the 1st to the 4th element.
As such, this is the code that I would do:
qdiag = diag(Q);
xMinusZ = x - z; % Takes z and does x - z for every element in z
cumProdRes = cumprod(xMinusZ);
P = sum(qdiag .* [1;cumProdRes(1:end-1)]);
P should give you P(x) that you desired. Make sure that z is a column vector to make it compatible with the diagonals extracted from Q.
NB: I believe there is a typo in your equation. The last term of your equation (going with your convention) should have (x-z(2n-1)) and not (x-z(2n)). This is because the first term in your equation does not have z.
Here's an example. Let's suppose Q is defined
Q = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16];
The vector z is:
z = [4;3;2;1];
Let's evaluate the function at x = 2
Extracting the diagonals of Q should give us Q = [1;6;11;16]. Subtract x from every element of z should give us:
xMinusZ = [-2;-1;0;1];
Using the equation that you have above, we have:
P = 1 + 6*(-2) + 11*(-2)*(-1) + 16*(-2)*(-1)*(0) = 11
This is what the code should give.
What if we want to do this for more than one value of x?
As you have stated in your post, you want to evaluate this for a series of x values. As such, you need to modify the code so that it looks like this (make sure that x is a column vector):
qdiag = diag(Q);
xMinusZ = repmat(x,1,length(z)) - repmat(z',length(z),1);
cumProdRes = cumprod(xMinusZ,2);
P = sum(repmat(qdiag',length(z),1).*[ones(length(z),1) cumProdRes(:,1:end-1)],2);
P should now give you a vector of outputs, and so if you want to plot this, simply do plot(x,P);