Batch status - 'validating' after failed creation - shippo

Hi i`m tryng to work with shipping batches, after i create batch like this:
{"default_carrier_account":"9348***********50","default_servicelevel_token":"usps_priority","metadata":"test","label_filetype":"PDF_4x6","batch_shipments":[{"carrier_account":"93********************","servicelevel_token":"usps_priority","shipment":"c8c411c2ad8b497eb583decf7c3c614d","metadata":1},{"carrier_account":"9348ce6eecf**********ab850","servicelevel_token":"usps_priority","shipment":"768ae43826b04040b32490a6f069fa4f","metadata":2}]}
i get notification like this:
batch 0f0b69ae42bc475ab3c1421edddeb4fc creation failed
and after this i try to make api request and get batch data(status, messages, etc..) i did post request to : http://api.goshippo.com/batches/0f0b69ae42bc475ab3c1421edddeb4fc?page=1
and get response:
{
"object_id":"0f0b69ae42bc475ab3c1421edddeb4fc",
"object_owner":"info#skumatrix.com",
"status":"VALIDATING",
"object_created":"2017-04-16T16:35:24.925Z",
"object_updated":"2017-04-16T16:35:27.143Z",
"metadata":"test",
"default_carrier_account":"9***************b850",
"default_servicelevel_token":"usps_priority",
"label_filetype":"PDF_4x6",
"batch_shipments":{
"count":0,
"next":null,
"previous":null,
"results":{
}
},
"object_results":{
"purchase_succeeded":0,
"purchase_failed":0,
"creation_failed":0,
"creation_succeeded":0
},
"label_url":{
}
}
what i don`t understand is - why status is still validating and why there is no error messages ?

So, for starters, the default status of a Batch object in Shippo is VALIDATING. So this is why it would persist to stay in that state, although it might be a little confusing when there is an unexpected failure (which is what appears to have happened here).
As mentioned in the comments there, this failure occurred due to trying to do a Batch purchase using a collection of Shipment object_id's. The Batch endpoint is actually supposed to allow you to create a collection of Shipment objects en masse, and then later you can Batch purchase the labels for your desired rates on those Shipment objects.
Rate retrieval is generally the more time consuming process, depending on how many connected shipping accounts you have. So Batch creation is intended to allow you to have Shippo retrieve rates for a lot of packages and simply check on them once they are done (or get notified of their completion via Shippo's webhooks).
So moving forward, make sure that you first try to create the Batch with a collection of Shipments (see here). Then you can proceed to create the labels for the shipment like so.

Related

How to merge/consolidate responses from multiple RESTful microservices?

Let's say there are two (or more) RESTful microservices serving JSON. Service (A) stores user information (name, login, password, etc) and service (B) stores messages to/from that user (e.g. sender_id, subject, body, rcpt_ids).
Service (A) on /profile/{user_id} may respond with:
{id: 1, name:'Bob'}
{id: 2, name:'Alice'}
{id: 3, name:'Sue'}
and so on
Service (B) responding at /user/{user_id}/messages returns a list of messages destined for that {user_id} like so:
{id: 1, subj:'Hey', body:'Lorem ipsum', sender_id: 2, rcpt_ids: [1,3]},
{id: 2, subj:'Test', body:'blah blah', sender_id: 3, rcpt_ids: [1]}
How does the client application consuming these services handle putting the message listing together such that names are shown instead of sender/rcpt ids?
Method 1: Pull the list of messages, then start pulling profile info for each id listed in sender_id and rcpt_ids? That may require 100's of requests and could take a while. Rather naive and inefficient and may not scale with complex apps???
Method 2: Pull the list of messages, extract all user ids and make bulk request for all relevant users separately... this assumes such service endpoint exists. There is still delay between getting message listing, extracting user ids, sending request for bulk user info, and then awaiting for bulk user info response.
Ideally I want to serve out a complete response set in one go (messages and user info). My research brings me to merging of responses at service layer... a.k.a. Method 3: API Gateway technique.
But how does one even implement this?
I can obtain list of messages, extract user ids, make a call behind the scenes and obtain users data, merge result sets, then serve this final result up... This works ok with 2 services behind the scenes... But what if the message listing depends on more services... What if I needed to query multiple services behind the scenes, further parse responses of these, query more services based on secondary (tertiary?) results, and then finally merge... where does this madness stop? How does this affect response times?
And I've now effectively created another "client" that combines all microservice responses into one mega-response... which is no different that Method 1 above... except at server level.
Is that how it's done in the "real world"? Any insights? Are there any open source projects that are built on such API Gateway architecture I could examine?
The solution which we used for such problem was denormalization of data and events for updating.
Basically, a microservice has a subset of data it requires from other microservices beforehand so that it doesn't have to call them at run time. This data is managed through events. Other microservices when updated, fire an event with id as a context which can be consumed by any microservice which have any interest in it. This way the data remain in sync (of course it requires some form of failure mechanism for events). This seems lots of work but helps us with any future decisions regarding consolidation of data from different microservices. Our microservice will always have all data available locally for it process any request without synchronous dependency on other services
In your case i.e. for showing names with a message, you can keep an extra property for names in Service(B). So whenever a name update in Service(A) it will fire an update event with id for the updated name. The Service(B) then gets consumes the event, fetches relevant data from Service(A) and updates its database. This way even if Service(A) is down Service(B) will function, albeit with some stale data which will eventually be consistent when Service(A) comes up and you will always have some name to be shown on UI.
https://enterprisecraftsmanship.com/2017/07/05/how-to-request-information-from-multiple-microservices/
You might want to perform response aggregation strategies on your API gateway. I've written an article on how to perform this on ASP.net Core and Ocelot, but there should be a counter-part for other API gateway technologies:
https://www.pogsdotnet.com/2018/09/api-gateway-response-aggregation-with.html
You need to write another service called Aggregator which will internally call both services and get the response and merge/filter them and return the desired result. This can be easily achieved in non-blocking using Mono/Flux in Spring Reactive.
An API Gateway often does API composition.
But this is typical engineering problem where you have microservices which is implementing databases per service pattern.
The API Composition and Command Query Responsibility Segregation (CQRS) pattern are useful ways to implement queries .
Ideally I want to serve out a complete response set in one go
(messages and user info).
The problem you've described is what Facebook realized years ago in which they decided to tackle that by creating an open source specification called GraphQL.
But how does one even implement this?
It is already implemented in various popular programming languages and maybe you can give it a try in the programming language of your choice.

Avoid duplicate POSTs with REST

I have been using POST in a REST API to create objects. Every once in a while, the server will create the object, but the client will be disconnected before it receives the 201 Created response. The client only sees a failed POST request, and tries again later, and the server happily creates a duplicate object...
Others must have had this problem, right? But I google around, and everyone just seems to ignore it.
I have 2 solutions:
A) Use PUT instead, and create the (GU)ID on the client.
B) Add a GUID to all objects created on the client, and have the server enforce their UNIQUE-ness.
A doesn't match existing frameworks very well, and B feels like a hack. How does other people solve this, in the real world?
Edit:
With Backbone.js, you can set a GUID as the id when you create an object on the client. When it is saved, Backbone will do a PUT request. Make your REST backend handle PUT to non-existing id's, and you're set.
Another solution that's been proposed for this is POST Once Exactly (POE), in which the server generates single-use POST URIs that, when used more than once, will cause the server to return a 405 response.
The downsides are that 1) the POE draft was allowed to expire without any further progress on standardization, and thus 2) implementing it requires changes to clients to make use of the new POE headers, and extra work by servers to implement the POE semantics.
By googling you can find a few APIs that are using it though.
Another idea I had for solving this problem is that of a conditional POST, which I described and asked for feedback on here.
There seems to be no consensus on the best way to prevent duplicate resource creation in cases where the unique URI generation is unable to be PUT on the client and hence POST is needed.
I always use B -- detection of dups due to whatever problem belongs on the server side.
Detection of duplicates is a kludge, and can get very complicated. Genuine distinct but similar requests can arrive at the same time, perhaps because a network connection is restored. And repeat requests can arrive hours or days apart if a network connection drops out.
All of the discussion of identifiers in the other anwsers is with the goal of giving an error in response to duplicate requests, but this will normally just incite a client to get or generate a new id and try again.
A simple and robust pattern to solve this problem is as follows: Server applications should store all responses to unsafe requests, then, if they see a duplicate request, they can repeat the previous response and do nothing else. Do this for all unsafe requests and you will solve a bunch of thorny problems. Repeat DELETE requests will get the original confirmation, not a 404 error. Repeat POSTS do not create duplicates. Repeated updates do not overwrite subsequent changes etc. etc.
"Duplicate" is determined by an application-level id (that serves just to identify the action, not the underlying resource). This can be either a client-generated GUID or a server-generated sequence number. In this second case, a request-response should be dedicated just to exchanging the id. I like this solution because the dedicated step makes clients think they're getting something precious that they need to look after. If they can generate their own identifiers, they're more likely to put this line inside the loop and every bloody request will have a new id.
Using this scheme, all POSTs are empty, and POST is used only for retrieving an action identifier. All PUTs and DELETEs are fully idempotent: successive requests get the same (stored and replayed) response and cause nothing further to happen. The nicest thing about this pattern is its Kung-Fu (Panda) quality. It takes a weakness: the propensity for clients to repeat a request any time they get an unexpected response, and turns it into a force :-)
I have a little google doc here if any-one cares.
You could try a two step approach. You request an object to be created, which returns a token. Then in a second request, ask for a status using the token. Until the status is requested using the token, you leave it in a "staged" state.
If the client disconnects after the first request, they won't have the token and the object stays "staged" indefinitely or until you remove it with another process.
If the first request succeeds, you have a valid token and you can grab the created object as many times as you want without it recreating anything.
There's no reason why the token can't be the ID of the object in the data store. You can create the object during the first request. The second request really just updates the "staged" field.
Server-issued Identifiers
If you are dealing with the case where it is the server that issues the identifiers, create the object in a temporary, staged state. (This is an inherently non-idempotent operation, so it should be done with POST.) The client then has to do a further operation on it to transfer it from the staged state into the active/preserved state (which might be a PUT of a property of the resource, or a suitable POST to the resource).
Each client ought to be able to GET a list of their resources in the staged state somehow (maybe mixed with other resources) and ought to be able to DELETE resources they've created if they're still just staged. You can also periodically delete staged resources that have been inactive for some time.
You do not need to reveal one client's staged resources to any other client; they need exist globally only after the confirmatory step.
Client-issued Identifiers
The alternative is for the client to issue the identifiers. This is mainly useful where you are modeling something like a filestore, as the names of files are typically significant to user code. In this case, you can use PUT to do the creation of the resource as you can do it all idempotently.
The down-side of this is that clients are able to create IDs, and so you have no control at all over what IDs they use.
There is another variation of this problem. Having a client generate a unique id indicates that we are asking a customer to solve this problem for us. Consider an environment where we have a publicly exposed APIs and have 100s of clients integrating with these APIs. Practically, we have no control over the client code and the correctness of his implementation of uniqueness. Hence, it would probably be better to have intelligence in understanding if a request is a duplicate. One simple approach here would be to calculate and store check-sum of every request based on attributes from a user input, define some time threshold (x mins) and compare every new request from the same client against the ones received in past x mins. If the checksum matches, it could be a duplicate request and add some challenge mechanism for a client to resolve this.
If a client is making two different requests with same parameters within x mins, it might be worth to ensure that this is intentional even if it's coming with a unique request id.
This approach may not be suitable for every use case, however, I think this will be useful for cases where the business impact of executing the second call is high and can potentially cost a customer. Consider a situation of payment processing engine where an intermediate layer ends up in retrying a failed requests OR a customer double clicked resulting in submitting two requests by client layer.
Design
Automatic (without the need to maintain a manual black list)
Memory optimized
Disk optimized
Algorithm [solution 1]
REST arrives with UUID
Web server checks if UUID is in Memory cache black list table (if yes, answer 409)
Server writes the request to DB (if was not filtered by ETS)
DB checks if the UUID is repeated before writing
If yes, answer 409 for the server, and blacklist to Memory Cache and Disk
If not repeated write to DB and answer 200
Algorithm [solution 2]
REST arrives with UUID
Save the UUID in the Memory Cache table (expire for 30 days)
Web server checks if UUID is in Memory Cache black list table [return HTTP 409]
Server writes the request to DB [return HTTP 200]
In solution 2, the threshold to create the Memory Cache blacklist is created ONLY in memory, so DB will never be checked for duplicates. The definition of 'duplication' is "any request that comes into a period of time". We also replicate the Memory Cache table on the disk, so we fill it before starting up the server.
In solution 1, there will be never a duplicate, because we always check in the disk ONLY once before writing, and if it's duplicated, the next roundtrips will be treated by the Memory Cache. This solution is better for Big Query, because requests there are not imdepotents, but it's also less optmized.
HTTP response code for POST when resource already exists

Neo4j: Cypher over REST get summary of operations

Is there any way when using the REST API to get the summary of operations that have completed without returning the nodes.
When using the web admin console after doing an operation I get a summary like
1 node inserted
2 relationships inserted
1 node deleted.
In the examples here I notice there is no example of summary information sent back to the client. I would have to return the nodes inserted to know the insert had occurred.
When doing a request over the network often it is a good idea to minimize the data response size. A quick summary would help with this. is it possible to get one from the REST endpoint?
I'm pretty sure this is not possible. It would be a nice addition, though. Have you filed a feature request?

How do you ensure consistent client reads in an eventual consistent system?

I'm digging into CQRS and I am looking for articles on how to solve client reads in an eventual consistent system. Consider for example a web shop where users can add items to their cart. How can you ensure that the client displays items in the cart if the actual processing of the command "AddItemToCart" is done async? I understand the principles of dispatching commands async and updating the read model async based on domain events, but I fail to see how this is handled from the clients perspective.
There are a few different ways of doing it;
Wait at user till consistent
Just poll the server until you get the read model updated. This is similar to what Ben showed.
Ensure consistency through 2PC
You have a queue that supports DTC; and your commands are put there first. They are then; executed, events sent, read model updated; all inside a single transaction. You have not actually gained anything with this method though, so don't do it this way.
Fool the client
Place the read models in local storage at the client and update them when the corresponding event is sent -- but you were expecting this event anyway, so you had already updated the javascript view of the shopping cart.
I'd recommend you have a look at the Microsoft Patterns & Practices team's guidance on CQRS. Although this is still work-in-progress they have given one solution to the issue you've raised.
Their approach for commands requiring feedback is to submit the command asynchronously, redirect to another controller action and then poll the read model for the expected change or a time-out occurs. This is using the Post-Redirect-Get pattern which works better with the browser's forward and back navigation buttons, and gives the infrastructure more time to process the command before the MVC controller starts polling.
Example code from the RegistrationController using ASP.NET MVC 4 asynchronous controllers.
[HttpGet]
[OutputCache(Duration = 0, NoStore = true)]
public Task<ActionResult> SpecifyRegistrantAndPaymentDetails(Guid orderId, int orderVersion)
{
return this.WaitUntilOrderIsPriced(orderId, orderVersion)
.ContinueWith<ActionResult>(
...
);
}
...
private Task<PricedOrder> WaitUntilOrderIsPriced(Guid orderId, int lastOrderVersion)
{
return
TimerTaskFactory.StartNew<PricedOrder>(
() => this.orderDao.FindPricedOrder(orderId),
order => order != null && order.OrderVersion > lastOrderVersion,
PricedOrderPollPeriodInMilliseconds,
DateTime.Now.AddSeconds(PricedOrderWaitTimeoutInSeconds));
}
I'd probably use AJAX polling instead of having a blocked web request at the server.
Post-Redirect-Get
You're hoping that the save command executes on time before Get is called. What if the command takes 10 seconds to complete in the back end but Get is called in 1 second?
Local Storage
With storing the result of the command on the client while the command goes off to execute, you're assuming that the command will go through without errors. What if the back-end runs into an error while processing the command? Then what you have locally isn't consistent.
Polling
Polling seems to be the option that is actually in line with eventual consistency; you're not faking or assuming. Your polling mechanism can be an asynchronous as a part of your page, e.g. shopping cart page component polls until it gets an update without refreshing the page.
Callbacks
You could introduce something like web hooks to make a call back to the client if the client is capable of receiving such. By providing a correlation Id once the command is accepted by the back-end, once the command has finished processing, the back-end can notify the front end of the command's status along with the correlation Id on whether the command went through successfully or not. There is no need for any kind of polling with this approach.

RESTful way to create multiple items in one request

I am working on a small client server program to collect orders. I want to do this in a "REST(ful) way".
What I want to do is:
Collect all orderlines (product and quantity) and send the complete order to the server
At the moment I see two options to do this:
Send each orderline to the server: POST qty and product_id
I actually don't want to do this because I want to limit the number of requests to the server so option 2:
Collect all the orderlines and send them to the server at once.
How should I implement option 2? a couple of ideas I have is:
Wrap all orderlines in a JSON object and send this to the server or use an array to post the orderlines.
Is it a good idea or good practice to implement option 2, and if so how should I do it.
What is good practice?
I believe that another correct way to approach this would be to create another resource that represents your collection of resources.
Example, imagine that we have an endpoint like /api/sheep/{id} and we can POST to /api/sheep to create a sheep resource.
Now, if we want to support bulk creation, we should consider a new flock resource at /api/flock (or /api/<your-resource>-collection if you lack a better meaningful name). Remember that resources don't need to map to your database or app models. This is a common misconception.
Resources are a higher level representation, unrelated with your data. Operating on a resource can have significant side effects, like firing an alert to a user, updating other related data, initiating a long lived process, etc. For example, we could map a file system or even the unix ps command as a REST API.
I think it is safe to assume that operating a resource may also mean to create several other entities as a side effect.
Although bulk operations (e.g. batch create) are essential in many systems, they are not formally addressed by the RESTful architecture style.
I found that POSTing a collection as you suggested basically works, but problems arise when you need to report failures in response to such a request. Such problems are worse when multiple failures occur for different causes or when the server doesn't support transactions.
My suggestion to you is that if there is no performance problem, for example when the service provider is on the LAN (not WAN) or the data is relatively small, it's worth it to send 100 POST requests to the server. Keep it simple, start with separate requests and if you have a performance problem try to optimize.
Facebook explains how to do this: https://developers.facebook.com/docs/graph-api/making-multiple-requests
Simple batched requests
The batch API takes in an array of logical HTTP requests represented
as JSON arrays - each request has a method (corresponding to HTTP
method GET/PUT/POST/DELETE etc.), a relative_url (the portion of the
URL after graph.facebook.com), optional headers array (corresponding
to HTTP headers) and an optional body (for POST and PUT requests). The
Batch API returns an array of logical HTTP responses represented as
JSON arrays - each response has a status code, an optional headers
array and an optional body (which is a JSON encoded string).
Your idea seems valid to me. The implementation is a matter of your preference. You can use JSON or just parameters for this ("order_lines[]" array) and do
POST /orders
Since you are going to create more resources at once in a single action (order and its lines) it's vital to validate each and every of them and save them only if all of them pass validation, ie. you should do it in a transaction.
I've actually been wrestling with this lately, and here's what I'm working towards.
If a POST that adds multiple resources succeeds, return a 200 OK (I was considering a 201, but the user ultimately doesn't land on a resource that was created) along with a page that displays all resources that were added, either in read-only or editable fashion. For instance, a user is able to select and POST multiple images to a gallery using a form comprising only a single file input. If the POST request succeeds in its entirety the user is presented with a set of forms for each image resource representation created that allows them to specify more details about each (name, description, etc).
In the event that one or more resources fails to be created, the POST handler aborts all processing and appends each individual error message to an array. Then, a 419 Conflict is returned and the user is routed to a 419 Conflict error page that presents the contents of the error array, as well as a way back to the form that was submitted.
I guess it's better to send separate requests within single connection. Of course, your web-server should support it
You won't want to send the HTTP headers for 100 orderlines. You neither want to generate any more requests than necessary.
Send the whole order in one JSON object to the server, to: server/order or server/order/new.
Return something that points to: server/order/order_id
Also consider using CREATE PUT instead of POST