Neural network gets only 50% good prediction on test data - matlab

I made a neural network whice i want to classify the input data (400 caracteristics per input data) as one of the five arabic dialects. I divede the trainig data in "train data", "validation data" and than "test date", with net.divideFcn = 'dividerand'; . I use trainbr as training function, whice results in a long training, that's because i have 9000 elements in training data.
For the network arhitecture i used two-layers, first with 10 perceptrons, second with 5, 5 because i use one vs all strategy.
The network training ends usually with minimum gradient reached, rather than minimux error.
How can i make the network predict better? Could it be o problem with generalization (the network learn very well the training data, but test on new data tends to fail?
Should i add more perceptrons to the first layer? I'm asking that because i take about a hour to train the network when i have 10 perceptrons on first layer, so the time will increase.
This is the code for my network:
[Test] = load('testData.mat');
[Ex] = load('trainData.mat');
Ex.trainVectors = Ex.trainVectors';
Ex.trainLabels = Ex.trainLabels';
net = newff(minmax(Ex.trainVectors),[10 5] ,{'logsig','logsig'},'trainlm','learngdm','sse');
net.performFcn = 'mse';
net.trainParam.lr = 0.01;
net.trainParam.mc = 0.95;
net.trainParam.epochs = 1000;
net.trainParam.goal = 0;
net.trainParam.max_fail = 50;
net.trainFcn = 'trainbr';
net.divideFcn = 'dividerand';
net.divideParam.trainRatio = 0.7;
net.divideParam.valRatio = 0.15;
net.divideParam.testRatio = 0.15;
net = init(net);
net = train(net,Ex.trainVectors,Ex.trainLabels);
Thanks !

Working with neural networks is some type of creative work. So noone can't give you the only true answer. But I can give some advices based on my own experience.
First of all - check the network error when training ends (on training and validation data sets. Before you start to use test data set). You told it is minimum but what is its actual value? If it 50% too, so we have bad data or wrong net architecture.
If error for train data set is OK. Next step - lets check how much the coefficients of your net are changing at the validation step. And what's up about the error here. If they changed dramatically that's the sigh our architecture is wrong: Network does not have the ability to generalize and will retrain at every new data sets.
What else can we do before changing architecture? We can change the number of epochs. Sometimes we can get good results but it is some type of random - we must be sure the changing of coefficient is small at the ending steps of training. But as I remember nntool check it automatically, so maybe we can skip this step.
One more thing I want to recommend to you - change train data set. Maybe you know rand is give you always the same number at start of matlab, so if you create your data sets only once you can work with the same sets always. This problem is also about non-homogeneous data. It can be that some part of your data is more important than other. So if some different random sets will give about the same error data is ok and we can go further. If not - we need to work with data and split it more carefully. Sometimes I avoid using dividerand and divide data manually.
Sometimes I tried to change the type of activation function. But here you use perceptron... So the idea - try to use sigma- or linear- neurons instead of perceptrons. This rarely leads to significant improvements but can help.
If all this steps can't give you enough you have to change net architecture. And the number of neurons in the first layer is the first you have to do. Usually when I work on the neural network I spend a lot of time trying not only different number of neurons but the different types of nets too.
For example, I found interesting article about your topic: link at Alberto Simões article. And that's what they say:
Regarding the number of units in the hidden layers, there are some
rules of thumb: use the same number of units in all hidden layers, and
use at least the same number of units as the maximum between the
number of classes and the number of features. But there can be up to
three times that value. Given the high number of features we opted to
keep that same number of units in the hidden layer.
Some advices from comments:
Data split method (for train and test data sets) depends on your data. For example, I worked on industry data and found that at the last part of the data set technological parameters (pressure for some equipment) was changed. So I have to get data for both operation modes to train data set. But for your case I don't thing there are the same problem... I recommend you to try several random sets (just check they are really different!).
For measuring net error I usually calculate full vector of errors - I train net and then check it's work for all values to get the whole errors vector. It's useful to get some useful vies like histograms and etc and I can see where my net is go wrong. It is not necessary and even harmful to get sse (or mse) close to zero - usually that's mean you already overtrain the net. For the first approximation I usually try to get 80-95% of correct values on training data set and then try the net on the test data set.

Related

Character Recognition Using Back Propagation Algorithm Testing

Recently I've been working on character recognition using Back Propagation Algorithm. I've taken the image and reduced to 5x7 size, therefore I got 35 pixels and trained the network using those pixels with 35 input neurons, 35 hidden nodes, and 10 output nodes. And I had completed the training successfully and I got weights that I needed. And I've got stuck here. I have my test set and I know I should feed forward the network. But I don't know what to do exactly. My test set will be 4 samples of 1x35. My output layer has 10 neurons. how do I exactly distinguish the characters with the output that I will get? I want to know how this testing works. Please guide me through this stage. Thanks in advance.
One vs All
A common approach for testing these types of neural networks is "one-vs-all" approach. We view each of the output nodes as its own classifier that is giving the probability of the sample being that class vs not being that class.
For instance if you network output [1, 0, ..., 0] then class 1 has high probability of being class 1 vs not being class 1. Class 2 has low probability of being class 2 vs not being class 2, etc.
Ties
In the case of a tie, it is common (in research) to have a random function break the tie. If you get [1, 1, 1, ..., 1] then the function would pick a number from 1-10 and that is your prediction. In practice sometimes an expert system is used to break ties. Perhaps class 1 is more expensive than class 2, so we tie in preference to class 2.
Steps
So the steps are:
Split dataset into test/train set
Train weights on train set
Pass test set forward through the neural network
For each sample, choose the argmax (the output with highest value) as your prediction
In case of tie, choose randomly between all tying classes
Aside
In your particular case, I imagine implementation of this strategy will result in a network that barely beats random performance (10%) accuracy.
I would suggest some reconsidering of the network architecture.
If you look at your 5x7 images, can you tell what number that image was originally? It seems likely that scaling the image down to this size losses too much information that the network cannot distinguish between classes.
Debugging
From what you've described I would look at the following when debugging your network.
Is your data preprocessing (down-scaling) leeching out too much information? Check this by manually investigating a few of the images and seeing if you can tell what the image should be.
Does your one-hot algorithm work? When you convert your targets for training, does it successfully convert 1 -> [1, 0, 0, ..., 0]?
Is your back-prop / gradient descent algorithm correct? You should see (roughly) a monotonic decrease in your loss function while training. Try at every step (or every few steps) printing the loss that you are optimizing. Or even for a very simple gut check, print mean squared error: (P-Y)^2

Is it necessary to initialized the weights for every time retraining the same model in matlab with nntool?

I know for the ANN model, the initial weights are random. If I train a model and repeat training 10 times by nntool, do the weights initialize every time when I click the training button, or still use the same initial weights you just adjusted?
I am not sure if the nntool you refer to uses the train method (see here https://de.mathworks.com/help/nnet/ref/train.html).
I have used this method quite extensively and it works in a similar way as tensorflow, you store a number of checkpoints and load the latest status to continue training from such point. The code would look something like this.
[feat,target] = iris_dataset;
my_nn = patternnet(20);
my_nn = train(my_nn,feat,target,'CheckpointFile','MyCheckpoint','CheckpointDelay',30);
Here we have requested that checkpoints are stored at a rate not greater than one each 30 seconds. When you want to continue training the net must be loaded from the checkpoint file as:
[feat,target] = iris_dataset;
load MyCheckpoint
my_nn = checkpoint.my_nn;
my_nn = train(my_nn,feat,target,'CheckpointFile','MyCheckpoint');
This solution involves training the network from the command line or via a script rather than using the GUI supplied by Mathworks. I honestly think this latter method is great for beginners but if you want to do any interesting clever start using the command line or even better switch to libraries like Torch or Tensorflow!
Hope it helps!

Re-Use Sliding Window data for Neural Network for Time Series?

I've read a few ideas on the correct sample size for Feed Forward Neural networks. x5, x10, and x30 the # of weights. This part I'm not overly concerned about, what I am concerned about is can I reuse my training data (randomly).
My data is broken up like so
5 independent vars and 1 dependent var per sample.
I was planning on feeding 6 samples in (6x5 = 30 input neurons), confirm the 7th samples dependent variable (1 output neuron.
I would train on neural network by running say 6 or 7 iterations. before trying to predict the next iteration outside of my training data.
Say I have
each sample = 5 independent variables & 1 dependent variables (6 vars total per sample)
output = just the 1 dependent variable
sample:sample:sample:sample:sample:sample->output(dependent var)
Training sliding window 1:
Set 1: 1:2:3:4:5:6->7
Set 2: 2:3:4:5:6:7->8
Set 3: 3:4:5:6:7:8->9
Set 4: 4:5:6:7:8:9->10
Set 5: 5:6:7:6:9:10->11
Set 6: 6:7:8:9:10:11->12
Non training test:
7:8:9:10:11:12 -> 13
Training Sliding Window 2:
Set 1: 2:3:4:5:6:7->8
Set 2: 3:4:5:6:7:8->9
...
Set 6: 7:8:9:10:11:12->13
Non Training test: 8:9:10:11:12:13->14
I figured I would randomly run through my set's per training iteration say 30 times the number of my weights. I believe in my network I have about 6 hidden neurons (i.e. sqrt(inputs*outputs)). So 36 + 6 + 1 + 2 bias = 45 weights. So 44 x 30 = 1200 runs?
So I would do a randomization of the 6 sets 1200 times per training sliding window.
I figured due to the small # of data, I was going to do simulation runs (i.e. rerun over the same problem with new weights). So say 1000 times, of which I do 1140 runs over the sliding window using randomization.
I have 113 variables, this results in 101 training "sliding window".
Another question I have is if I'm trying to predict up or down movement (i.e. dependent variable). Should I match to an actual # or just if I guessed up/down movement correctly? I'm thinking I should shoot for an actual number, but as part of my analysis do a % check on if this # is guessed correctly as up/down.
If you have a small amount of data, and a comparatively large number of training iterations, you run the risk of "overtraining" - creating a function which works very well on your test data but does not generalize.
The best way to avoid this is to acquire more training data! But if you cannot, then there are two things you can do. One is to split the training data into test and verification data - using say 85% to train and 15% to verify. Verification means compute the fitness of the learner on the training set, without adjusting the weights/training. When the verification data fitness (which you are not training on) stops improving (in general it will be noisy), and your training data fitness continues improving - stop training. If on the other hand you use a "sliding window", you may not have a good criterion to know when to stop training - the fitness function will bounce around in unpredictable ways (you might slowly make the effect of each training iteration have less effect on the parameters, however, to give you convergence... maybe not the best approach but some training regimes do this) The other thing you can do normalize out your node's weights via some metric to ensure some notion of 'smoothness' - if you visualize overfitting for a second you'll find that in the extreme case your fitness function sharply curves around your dataset positives...
As for the latter question - for the training to converge, you fitness function needs to be smooth. If you were to just use binary all-or-nothing fitness terms, most likely what would happen is that whatever algorithm you are using to train (backprop, BGFS, etc...) would not converge. In practice, the classification criterion should be an activation that is above for a positive result, less than or equal to for a negative result, and varies smoothly in your weight/parameter space. You can think of 0 as "I am certain that the answer is up" and 1 as "I am certain that the answer is down", and thus realize a fitness function that has a higher "cost" for incorrect guesses that were more certain... There are subtleties possible in how the function is shaped (for example you might have different ideas about how acceptable a false negative and false positive are) - and you may also introduce regions of "uncertain" where the result is closer to "zero weight" - but it should certainly be continuous/smooth.
You can re-use sliding window's.
It basically the same concept as bootstrapping (your training set); which in itself reduces training time, but don't know if it's really helpful in making the net more adaptive to anything other than the training data.
Below is an example of a sliding window in pictorial format (using spreadsheet magic)
http://i.imgur.com/nxhtgaQ.png
https://github.com/thistleknot/FredAPI/blob/05f74faf85d15f6898aa05b9b08d5363fe27c473/FredAPI/Program.cs
Line 294 shows how the code is ran using randomization, it resets the randomization at position 353 so the rest flows as normal.
I was also able to use a 1 (up) or 0 (down) as my target values and the network did converge.

PyBrain: MemoryError: while loading training dataset

I am trying to train a feedforward neural network, for binary classification. My Dataset is 6.2M with 1.5M dimension. I am using PyBrain. I am unable to load even a single datapoint. I am getting MemoryError.
My Code snippet is:
Train_ds = SupervisedDataSet(FV_length, 1) #FV_length is a computed value. 150000
feature_vector = numpy.zeros((FV_length),dtype=numpy.int)
#activate feature values
for index in nonzero_index_list:
feature_vector[index] = 1
Train_ds.addSample(feature_vector,class_label) # both the arguments are tuples
It looks like your computer just does not have the memory to add your feature and class label arrays to the supervised data set Train_ds.
If there is no way for you to allocate more memory to your system it might be a good idea to random sample from your data set and train on the smaller sample.
This should still give accurate results assuming the sample is large enough to be representative.

How to use KNN to classify data in MATLAB?

I'm having problems in understanding how K-NN classification works in MATLAB.´
Here's the problem, I have a large dataset (65 features for over 1500 subjects) and its respective classes' label (0 or 1).
According to what's been explained to me, I have to divide the data into training, test and validation subsets to perform supervised training on the data, and classify it via K-NN.
First of all, what's the best ratio to divide the 3 subgroups (1/3 of the size of the dataset each?).
I've looked into ClassificationKNN/fitcknn functions, as well as the crossval function (idealy to divide data), but I'm really not sure how to use them.
To sum up, I wanted to
- divide data into 3 groups
- "train" the KNN (I know it's not a method that requires training, but the equivalent to training) with the training subset
- classify the test subset and get it's classification error/performance
- what's the point of having a validation test?
I hope you can help me, thank you in advance
EDIT: I think I was able to do it, but, if that's not asking too much, could you see if I missed something? This is my code, for a random case:
nfeats=60;ninds=1000;
trainRatio=0.8;valRatio=.1;testRatio=.1;
kmax=100; %for instance...
data=randi(100,nfeats,ninds);
class=randi(2,1,ninds);
[trainInd,valInd,testInd] = dividerand(1000,trainRatio,valRatio,testRatio);
train=data(:,trainInd);
test=data(:,testInd);
val=data(:,valInd);
train_class=class(:,trainInd);
test_class=class(:,testInd);
val_class=class(:,valInd);
precisionmax=0;
koptimal=0;
for know=1:kmax
%is it the same thing use knnclassify or fitcknn+predict??
predicted_class = knnclassify(val', train', train_class',know);
mdl = fitcknn(train',train_class','NumNeighbors',know) ;
label = predict(mdl,val');
consistency=sum(label==val_class')/length(val_class);
if consistency>precisionmax
precisionmax=consistency;
koptimal=know;
end
end
mdl_final = fitcknn(train',train_class','NumNeighbors',know) ;
label_final = predict(mdl,test');
consistency_final=sum(label==test_class')/length(test_class);
Thank you very much for all your help
For your 1st question "what's the best ratio to divide the 3 subgroups" there are only rules of thumb:
The amount of training data is most important. The more the better.
Thus, make it as big as possible and definitely bigger than the test or validation data.
Test and validation data have a similar function, so it is convenient to assign them the same amount
of data. But it is important to have enough data to be able to recognize over-adaptation. So, they
should be picked from the data basis fully randomly.
Consequently, a 50/25/25 or 60/20/20 partitioning is quite common. But if your total amount of data is small in relation to the total number of weights of your chosen topology (e.g. 10 weights in your net and only 200 cases in the data), then 70/15/15 or even 80/10/10 might be better choices.
Concerning your 2nd question "what's the point of having a validation test?":
Typically, you train the chosen model on your training data and then estimate the "success" by applying the trained model to unseen data - the validation set.
If you now would completely stop your efforts to improve accuracy, you indeed don't need three partitions of your data. But typically, you feel that you can improve the success of your model by e.g. changing the number of weights or hidden layers or ... and now a big loops starts to run with many iterations:
1) change weights and topology, 2) train, 3) validate, not satisfied, goto 1)
The long-term effect of this loop is, that you increasingly adapt your model to the validation data, so the results get better not because you so intelligently improve your topology but because you unconsciously learn the properties of the validation set and how to cope with them.
Now, the final and only valid accuracy of your neural net is estimated on really unseen data: the test set. This is done only once and is also useful to reveal over-adaption. You are not allowed to start a second even bigger loop now to prohibit any adaption to the test set!