Non-linear SVM is not available in Apache Spark - scala

Does avyone know the reason why the Non-Linear SVM has not been implemented in Apache Spark?
I was reading this page:
https://issues.apache.org/jira/browse/SPARK-4638
Look at the last comment. It says:
"Commenting here b/c of the recent dev list thread: Non-linear kernels for SVMs in Spark would be great to have. The main barriers are:
Kernelized SVM training is hard to distribute. Naive methods require a lot of communication. To get this feature into Spark, we'd need to do proper background research and write up a good design.
Other ML algorithms are arguably more in demand and still need improvements (as of the date of this comment). Tree ensembles are first-and-foremost in my mind."
The question is: Why is the kernelized SVM hard to distribute?
Everybody knows that the non-linear SVMs exhibit better performance than the linear ones.

Related

Evaluation of user-based collaborative filtering K-Nearest Neighbor Algorithm

I was trying to find evaluation mechanisms of collaborative K-Nearest neighbor algorithm, but i am confused how can I evaluate this algorithm. How can I be sure that the recommendation done by this algorithm is correct or good. Actually I have also developed an algorithm that i want to compare with it. but i am not sure how can i compare and evaluate both of them. The data set used by me is of movie lens.
your people help on evaluating this recomender system will be highly appreciated.
Evaluating recommender systems is a large concern of its research and industry communities. Look at "Evaluating collaborative filtering recommender systems", a Herlocker et al paper. The people who publish MovieLens data (the GroupLens research lab at the University of Minnesota) also publish many papers on recsys topics, and the PDFs are often free at http://grouplens.org/publications/.
Check out https://scholar.google.com/scholar?hl=en&q=evaluating+recommender+systems.
In short, you should use a method that hides some data. You will train your model on a portion of the data (called "training data") and test on the remainder of the data that your model has never seen before. There's a formal way to do this called cross-validation, but the general concept of visible training data versus hidden test data is the most important.
I also recommend https://www.coursera.org/learn/recommender-systems, a Coursera course on recommender systems taught by GroupLens folks. In that course you'll learn to use LensKit, a recommender systems framework in Java that includes a large evaluation suite. Even if you don't take the course, LensKit may be just what you want.

Best method to implement text classification (2 classes)

I have to write classifier for corpus of texts, which should separate all my texts into 2 classes.
The corpus is very large (near 4 millions for test, and 50000 for study).
But, what algorithm should I choose?
Naive Bayesian
Neural networks
SVM
Random forest
kNN (why not?)
I heard that Random forests and SVM is state-of-the-art methods, but, maybe someone
has a deal with listed above algorithms, and knows, which is fastest and which more accurate?
As a 2-classes text classifier, I don't think you need:
(1) KNN: it is a clustering method rather than classification, and it is slow;
(2) Random forest: the decision trees may not be a good option in high sparse dimensions;
You can try:
(1) naive bayesian: most straightforward and easiest to code. Proved to work well in text classification problems;
(2) logistic regression: works well if your training sample number is much larger than the feature number;
(3) SVM: again, for training sample much more than features, SVM with linear kernel works as well as logistic regression. And it is also one of the top algorithms in text classification;
(4) Neural network: seems like a panacea in machine learning. In theory it can learn any models that SVM/logistic regression could. The problem is there are not so many packages on NN as there are in SVM. As a result, the optimization process for neural network is time-consuming.
Yet it is hard to say which algorithm is best suit for your case. If you are using python, scikit-learn includes almost all these algorithms for you to test. Besides, weka, which integrates many machine learning algorithms in a user friendly graphic interface, is also a good candidate for you to better know the performance of each algorithm.

Which predictive modelling technique will be most helpful?

I have a training dataset which gives me the ranking of various cricket players(2008) on the basis of their performance in the past years(2005-2007).
I've to develop a model using this data and then apply it on another dataset to predict the ranking of players(2012) using the data already given to me(2009-2011).
Which predictive modelling will be best for this? What are the pros and cons of using the different forms of regression or neural networks?
The type of model to use depends on different factors:
Amount of data: if you have very little data, you better opt for a simple prediction model like linear regression. If you use a prediction model which is too powerful you run into the risk of over-fitting your model with the effect that it generalizes bad on new data. Now you might ask, what is little data? That depends on the number of input dimensions and on the underlying distributions of your data.
Your experience with the model. Neural networks can be quite tricky to handle if you have little experience with them. There are quite a few parameters to be optimized, like the network layer structure, the number of iterations, the learning rate, the momentum term, just to mention a few. Linear prediction is a lot easier to handle with respect to this "meta-optimization"
A pragmatic approach for you, if you still cannot opt for one of the methods, would be to evaluate a couple of different prediction methods. You take some of your data where you already have target values (the 2008 data), split it into training and test data (take some 10% as test data, e.g.), train and test using cross-validation and compute the error rate by comparing the predicted values with the target values you already have.
One great book, which is also on the web, is Pattern recognition and machine learning by C. Bishop. It has a great introductory section on prediction models.
Which predictive modelling will be best for this? 2. What are the pros
and cons of using the different forms of regression or neural
networks?
"What is best" depends on the resources you have. Full Bayesian Networks (or k-Dependency Bayesian Networks) with information theoretically learned graphs, are the ultimate 'assumptionless' models, and often perform extremely well. Sophisticated Neural Networks can perform impressively well too. The problem with such models is that they can be very computationally expensive, so models that employ methods of approximation may be more appropriate. There are mathematical similarities connecting regression, neural networks and bayesian networks.
Regression is actually a simple form of Neural Networks with some additional assumptions about the data. Neural Networks can be constructed to make less assumptions about the data, but as Thomas789 points out at the cost of being considerably more difficult to understand (sometimes monumentally difficult to debug).
As a rule of thumb - the more assumptions and approximations in a model the easier it is to A: understand and B: find the computational power necessary, but potentially at the cost of performance or "overfitting" (this is when a model suits the training data well, but doesn't extrapolate to the general case).
Free online books:
http://www.inference.phy.cam.ac.uk/mackay/itila/
http://ciml.info/dl/v0_8/ciml-v0_8-all.pdf

text classification methods? SVM and decision tree

i have a training set and i want to use a classification method for classifying other documents according to my training set.my document types are news and categories are sports,politics,economic and so on.
i understand naive bayes and KNN completely but SVM and decision tree are vague and i dont know if i can implement this method by myself?or there is applications for using this methods?
what is the best method i can use for classifying docs in this way?
thanks!
Naive Bayes
Though this is the simplest algorithm and everything is deemed independent, in real text classification case, this method work great. And I would try this algorithm first for sure.
KNN
KNN is for clustering rather than classification. I think you misunderstand the conception of clustering and classification.
SVM
SVM has SVC(classification) and SVR(Regression) algorithms to do class classification and prediction. It sometime works good, but from my experiences, it has bad performance in text classification, as it has high demands for good tokenizers (filters). But the dictionary of the dataset always has dirty tokens. The accuracy is really bad.
Random Forest (decision tree)
I've never try this method for text classification. Because I think decision tree need several key nodes, while it's hard to find "several key tokens" for text classification, and random forest works bad for high sparse dimensions.
FYI
These are all from my experiences, but for your case, you have no better ways to decide which methods to use but to try every algorithm to fit your model.
Apache's Mahout is a great tool for machine learning algorithms. It integrates three aspects' algorithms: recommendation, clustering, and classification. You could try this library. But you have to learn some basic knowledge about Hadoop.
And for machine learning, weka is a software toolkit for experiences which integrates many algorithms.
Linear SVMs are one of the top algorithms for text classification problems (along with Logistic Regression). Decision Trees suffer badly in such high dimensional feature spaces.
The Pegasos algorithm is one of the simplest Linear SVM algorithms and is incredibly effective.
EDIT: Multinomial Naive bayes also works well on text data, though not usually as well as Linear SVMs. kNN can work okay, but its an already slow algorithm and doesn't ever top the accuracy charts on text problems.
If you are familiar with Python, you may consider NLTK and scikit-learn. The former is dedicated to NLP while the latter is a more comprehensive machine learning package (but it has a great inventory of text processing modules). Both are open source and have great community suport on SO.

Has anyone tried to compile code into neural network and evolve it?

Do you know if anyone has tried to compile high level programming languages (java, c#, etc') into a recurrent neural network and then evolve them?
I mean that the whole process including memory usage is stored in a graph of a neural net, and I'm talking about complex programs (thinking about natural language processing problems).
When I say neural net I mean a directed weighted graphs that spreads activation, and the nodes are functions of their inputs (linear, sigmoid and multiplicative to keep it simple).
Furthermore, is that what people mean in genetic programming or is there a difference?
Neural networks are not particularly well suited for evolving programs; their strength tends to be in classification. If anyone has tried, I haven't heard about it (which considering I barely touch neural networks is not a surprise, but I am active in the general AI field at the moment).
The main reason why neural networks aren't useful for generating programs is that they basically represent a mathematical equation (numeric, rather than functional). Given some numeric input, you get a numeric output. It is difficult to interpret these in the context of a program any more complicated than simple arithmetic.
Genetic Programming traditionally uses Lisp, which is a pure functional language, and often programs are often shown as tree diagrams (which occasionally look similar to some neural network diagrams - is this the source of your confusion?). The programs are evolved by exchanging entire branches of a tree (a function and all its parameters) between programs or regenerating an entire branch randomly.
There are certainly a lot of good (and a lot of bad) references on both of these topics out there - I refrain from listing them because it isn't clear what you are actually interested in. Wikipedia covers each of these techniques, and is a good starting point.
Genetic programming is very different from Neural networks. What you are suggesting is more along the lines of genetic programming - making small random changes to a program, possibly "breeding" successful programs. It is not easy, and I have my doubts that it can be done successfully across a large program.
You may have more luck extracting a small but critical part of your program, one which has a few particular "aspects" (such as parameter values) that you can try to evolve.
Google is your friend.
Some sophisticated anti-virus programs as well as sophisticated malware use formal grammar and genetic operators to evolve against each other using neural networks.
Here is an example paper on the topic: http://nexginrc.org/nexginrcAdmin/PublicationsFiles/raid09-sadia.pdf
Sources: A class on Artificial Intelligence I took a couple years ago.
With regards to your main question, no one has ever tried that on programming languages to the best of my knowledge, but there is some research in the field of evolutionary computation that could be compared to something like that (but it's obviously a far-fetched comparison). As a matter of possible interest, I asked a similar question about sel-improving compilers a while ago.
For a difference between genetic algorithms and genetic programming, have a look at this question.
Neural networks have nothing to do with genetic algorithms or genetic programming, but you can obviously use either to evolve neural nets (as any other thing for that matters).
You could have look at genetic-programming.org where they claim that they have found some near human competitive results produced by genetic programming.
I have not heard of self-evolving and self-imrpvoing programs before. They may exist as special research tools like genetic-programming.org have but nothing solid for generic use. And even if they exist they are very limited to special purpose operations like malware detection as Alain mentioned.