Explode multiple nested columns, perform agg and join all the tables - scala

I was wondering if there is another option much more efficient to do this job, for example:
val df0 = df.select($"id", explode($"event.x0") as "n_0" ).groupBy("id").agg(sum("n_0") as "0")
val df1 = df.select($"id", explode($"event.x1") as "n_1").groupBy("id").agg(sum("n_1") as "1")
val df2 = df.select($"id", explode($"event.x2") as "n_2").groupBy("id").agg(sum("n_2") as "2")
val df3 = df.select($"id", explode($"event.x3") as "n_3").groupBy("id").agg(sum("n_3") as "3)
val final_df = df.join(df0, "id").join(df1, "id").join(df2, "id").join(df3, "id")
I was trying something like this:
val df_x = df.select($"id", $"event", explode($"event.x0") as "0" )
.select($"id", $"event", $"0", explode($"event.x1") as "1")
.select($"id", $"event", $"0", $"1", explode($"event.x2") as "2")
.groupBy("id")
.agg(sum("0") as "0", sum("1") as "1", sum("2") as "2")
val final_df = df.join(df_x, "id")
Despite it runs much more faster!!!! The aggregations values are wrong, so it does not work actually :( !
Any ideas to decrease the amount of joins ?

Assuming each id doesn't have too many matching records, you can use the collect_list aggregation function to collect all matching arrays into an array-of-arrays, and then a User Defined Function to sum over these nested arrays:
val flattenAndSum = udf[Int, mutable.Seq[mutable.Seq[Int]]] { seqOfArrays => seqOfArrays.flatten.sum }
val sums = df.groupBy($"id").agg(
collect_list($"event.x0") as "arr0",
collect_list($"event.x1") as "arr1",
collect_list($"event.x2") as "arr2",
collect_list($"event.x3") as "arr3"
).select($"id",
flattenAndSum($"arr0") as "0",
flattenAndSum($"arr1") as "1",
flattenAndSum($"arr2") as "2",
flattenAndSum($"arr3") as "3"
)
df.join(sums, "id")
Alternatively, if that assumption cannot be made, you can create a User Defined Aggregation Function to perform the flatten-and-sum on the fly. This is safer and potentially faster but requires a bit more work:
// implement a UDAF:
class FlattenAndSum extends UserDefinedAggregateFunction {
override def inputSchema: StructType = new StructType().add("arr", ArrayType(IntegerType))
override def bufferSchema: StructType = new StructType().add("sum", IntegerType)
override def dataType: DataType = IntegerType
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = buffer.update(0, 0)
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val current = buffer.getAs[Int](0)
val toAdd = input.getAs[Seq[Int]](0).sum
buffer.update(0, current + toAdd)
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1.update(0, buffer1.getAs[Int](0) + buffer2.getAs[Int](0))
}
override def evaluate(buffer: Row): Any = buffer.getAs[Int](0)
}
// use it in aggregation:
val flattenAndSum = new FlattenAndSum()
val sums = df.groupBy($"id").agg(
flattenAndSum($"event.x0") as "0",
flattenAndSum($"event.x1") as "1",
flattenAndSum($"event.x2") as "2",
flattenAndSum($"event.x3") as "3"
)
df.join(sums, "id")

Related

How to port UDAF to Aggregator?

I have a DF looking like this:
time,channel,value
0,foo,5
0,bar,23
100,foo,42
...
I want a DF like this:
time,foo,bar
0,5,23
100,42,...
In Spark 2, I did it with a UDAF like this:
case class ColumnBuilderUDAF(channels: Seq[String]) extends UserDefinedAggregateFunction {
#transient lazy val inputSchema: StructType = StructType {
StructField("channel", StringType, nullable = false) ::
StructField("value", DoubleType, nullable = false) ::
Nil
}
#transient lazy val bufferSchema: StructType = StructType {
channels
.toList
.indices
.map(i => StructField("c%d".format(i), DoubleType, nullable = false))
}
#transient lazy val dataType: DataType = bufferSchema
#transient lazy val deterministic: Boolean = false
def initialize(buffer: MutableAggregationBuffer): Unit = channels.indices.foreach(buffer(_) = NaN)
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val channel = input.getAs[String](0)
val p = channels.indexOf(channel)
if (p >= 0 && p < channels.length) {
val v = input.getAs[Double](1)
if (!v.isNaN) {
buffer(p) = v
}
}
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit =
channels
.indices
.foreach { i =>
val v2 = buffer2.getAs[Double](i)
if ((!v2.isNaN) && buffer1.getAs[Double](i).isNaN) {
buffer1(i) = v2
}
}
def evaluate(buffer: Row): Any =
new GenericRowWithSchema(channels.indices.map(buffer.getAs[Double]).toArray, dataType.asInstanceOf[StructType])
}
which I use like this:
val cb = ColumnBuilderUDAF(Seq("foo", "bar"))
val dfColumnar = df.groupBy($"time").agg(cb($"channel", $"value") as "c")
and then, I rename c.c0, c.c1 etc. to foo, bar etc.
In Spark 3, UDAF is deprecated and Aggregator should be used instead. So I began to port it like this:
case class ColumnBuilder(channels: Seq[String]) extends Aggregator[(String, Double), Array[Double], Row] {
lazy val bufferEncoder: Encoder[Array[Double]] = Encoders.javaSerialization[Array[Double]]
lazy val zero: Array[Double] = channels.map(_ => Double.NaN).toArray
def reduce(b: Array[Double], a: (String, Double)): Array[Double] = {
val index = channels.indexOf(a._1)
if (index >= 0 && !a._2.isNaN) b(index) = a._2
b
}
def merge(b1: Array[Double], b2: Array[Double]): Array[Double] = {
(0 until b1.length.min(b2.length)).foreach(i => if (b1(i).isNaN) b1(i) = b2(i))
b1
}
def finish(reduction: Array[Double]): Row =
new GenericRowWithSchema(reduction.map(x => x: Any), outputEncoder.schema)
def outputEncoder: Encoder[Row] = ??? // what goes here?
}
I don't know how to implement the Encoder[Row] as Spark does not have a pre-defined one. If I simply do a straightforward approach like this:
val outputEncoder: Encoder[Row] = new Encoder[Row] {
val schema: StructType = StructType(channels.map(StructField(_, DoubleType, nullable = false)))
val clsTag: ClassTag[Row] = classTag[Row]
}
I get a ClassCastException because outputEncoder actually has to be ExpressionEncoder.
So, how do I implement this correctly? Or do I still have to use the deprecated UDAF?
You can do it with the use of groupBy and pivot
import spark.implicits._
import org.apache.spark.sql.functions._
val df = Seq(
(0, "foo", 5),
(0, "bar", 23),
(100, "foo", 42)
).toDF("time", "channel", "value")
df.groupBy("time")
.pivot("channel")
.agg(first("value"))
.show(false)
Output:
+----+----+---+
|time|bar |foo|
+----+----+---+
|100 |null|42 |
|0 |23 |5 |
+----+----+---+

Spark DataFrame Union Recursion

I am trying to substring(column,numOne,numTwo) for a given original DataFrame and create a new DataFrame by doing UNION on all subsets of DataFrame which were being created by doing substring(column,numOne,numTwo).
Below is some piece of code I've come up with
def main(args: Array[String]): Unit = {
//To Log only ERRORS
Logger.getLogger("org").setLevel(Level.ERROR)
val spark = SparkSession
.builder()
.appName("PopularMoviesDS")
.config("spark.sql.warehouse.dir", "file:///C:/temp")
.master("local[*]")
.getOrCreate()
var swing = 2
val dataframeInt = spark.createDataFrame(Seq(
(1, "Chandler", "Pasadena", "US")
)).toDF("id", "name", "city", "country")
var returnDf:DataFrame = spark.emptyDataFrame.withColumn("name",functions.lit(null))
def dataFrameCreatorOrg(df:DataFrame): DataFrame ={
val map:Map[Int, Seq[String]] = Map(1 -> Seq("1","4"), 2 -> Seq("2","5"))
var returnDf:DataFrame = spark.emptyDataFrame.withColumn("name",functions.lit(null))
while(swing>0){
returnDf = returnDf.union(df.selectExpr(s"substring(name,${map(swing)(0)},${map(swing)(1)})"))
swing -= 1
}
returnDf
}
dataFrameCreator(dataframeInt).show()
+-----+
| name|
+-----+
|handl|
| Chan|
+-----+
The above code is working as I expected, but I want to run the above-using tail recursion. Code below,
var swing = 2
val dataframeInt = spark.createDataFrame(Seq(
(1, "Chandler", "Pasadena", "US")
)).toDF("id", "name", "city", "country")
var returnDf:DataFrame = spark.emptyDataFrame.withColumn("name",functions.lit(null))
def dataFrameCreator(df:DataFrame): DataFrame ={
val map:Map[Int, Seq[String]] = Map(1 -> Seq("1","4"), 2 -> Seq("2","5"))
returnDf = returnDf.union(df.selectExpr(s"substring(name,${map(swing)(0)},${map(swing)(1)})"))
returnDf
}
#tailrec
def bigUnionHelper(num: Int, df: DataFrame): DataFrame = {
if (num<0) df
else bigUnionHelper(num-1, dataFrameCreator(dataframeInt))
}
bigUnionHelper(swing, dataframeInt).show()
//Result:
+-----+
| name|
+-----+
|handl|
|handl|
|handl|
+-----+
I totally get that there is room for optimization but I am unable to figure out why the tailRecursive - bigUnionHelper is not working and not giving the same result as the first function.
Any help is appreciated, Thank you so much in Advance.
I think it should be this way.
val swing = 2
val dataframeInt = spark.createDataFrame(Seq(
(1, "Chandler", "Pasadena", "US")
)).toDF("id", "name", "city", "country")
def bigUnionHelper(df: DataFrame, num: Int): DataFrame = {
#tailrec
def dataFrameCreator(df: DataFrame, num:Int, acc:List[DataFrame] = List()): List[DataFrame] = {
if (num < 1) acc
else {
val map: Map[Int, Seq[String]] = Map(1 -> Seq("1", "4"), 2 -> Seq("2", "5"))
val tempDf = df.selectExpr(s"substring(name,${map(num).head},${map(swing)(1)})")
dataFrameCreator(df, num -1, tempDf :: acc)
}
}
dataFrameCreator(df, num).reduce(_ union _)
}
bigUnionHelper(dataframeInt, swing).show()

Spark sessionization using data frames

I want to do clickstream sessionization on the spark data frame. Let's I have loaded the data frame which has events from multiple sessions with the following schema -
And I want to aggregate(stitch) the sessions, like this -
I have explored UDAF and Window functions but could not understand how I can use them for this specific use case. I know that partitioning the data by session id puts entire session data in a single partition but how do I aggregate them?
The idea is to aggregate all the events specific to each session as a single output record.
You can use collect_set:
def process(implicit spark: SparkSession) = {
import spark._
import org.apache.spark.sql.functions.{ concat, col, collect_set }
val seq = Seq(Row(1, 1, "startTime=1549270909"), Row(1, 1, "endTime=1549270913"))
val rdd = spark.sparkContext.parallelize(seq)
val df1 = spark.createDataFrame(rdd, StructType(List(StructField("sessionId", IntegerType, false), StructField("userId", IntegerType, false), StructField("session", StringType, false))))
df1.groupBy("sessionId").agg(collect_set("session"))
}
}
That gives you:
+---------+------------------------------------------+
|sessionId|collect_set(session) |
+---------+------------------------------------------+
|1 |[startTime=1549270909, endTime=1549270913]|
+---------+------------------------------------------+
as output.
If you need a more complex logic, it could be included in the following UDAF:
class YourComplexLogicStrings extends UserDefinedAggregateFunction {
override def inputSchema: StructType = StructType(StructField("input", StringType) :: Nil)
override def bufferSchema: StructType = StructType(StructField("pair", StringType) :: Nil)
override def dataType: DataType = StringType
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = buffer(0) = ""
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val b = buffer.getAs[String](0)
val i = input.getAs[String](0)
buffer(0) = { if(b.isEmpty) b + i else b + " + " + i }
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
val b1 = buffer1.getAs[String](0)
val b2 = buffer2.getAs[String](0)
if(!b1.isEmpty)
buffer1(0) = (b1) ++ "," ++ (b2)
else
buffer1(0) = b2
}
override def evaluate(buffer: Row): Any = {
val yourString = buffer.getAs[String](0)
// Compute your logic and return another String
yourString
}
}
def process0(implicit spark: SparkSession) = {
import org.apache.spark.sql.functions.{ concat, col, collect_set }
val agg0 = new YourComplexLogicStrings()
val seq = Seq(Row(1, 1, "startTime=1549270909"), Row(1, 1, "endTime=1549270913"))
val rdd = spark.sparkContext.parallelize(seq)
val df1 = spark.createDataFrame(rdd, StructType(List(StructField("sessionId", IntegerType, false), StructField("userId", IntegerType, false), StructField("session", StringType, false))))
df1.groupBy("sessionId").agg(agg0(col("session")))
}
It gives:
+---------+---------------------------------------+
|sessionId|yourcomplexlogicstrings(session) |
+---------+---------------------------------------+
|1 |startTime=1549270909,endTime=1549270913|
+---------+---------------------------------------+
Note that you could include very complex logic using spark sql functions directly if you want to avoid UDAFs.

Calculate a mode for multiple columns

I would like to calculate a mode for multiple columns in the same time in Spark and use this calculated values to impute missings in a DataFrame. I found how to calculate e.g. a mean, but a mode is more complex I think.
Here is a mean calculation:
val multiple_mean = df.na.fill(df.columns.zip(
df.select(intVars.map(mean(_)): _*).first.toSeq
).toMap)
I am able to calculate a mode in brute force way:
var list = ArrayBuffer.empty[Float]
for(column <- df.columns){
list += df.select(column).groupBy(col(column)).count().orderBy(desc("count")).first.toSeq(0).asInstanceOf[Float]
}
val multiple_mode = df.na.fill(df.columns.zip(list.toSeq).toMap)
What way would be the best if we consider a performance?
Thank you for any help.
You could use UserDefinedAggregateFunction. The code below is tested in spark 1.6.2
First create a class which extends UserDefinedAggregateFunction.
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
class ModeUDAF extends UserDefinedAggregateFunction{
override def dataType: DataType = StringType
override def inputSchema: StructType = new StructType().add("input", StringType)
override def deterministic: Boolean = true
override def bufferSchema: StructType = new StructType().add("mode", MapType(StringType, LongType))
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = Map.empty[Any, Long]
}
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val buff0 = buffer.getMap[Any, Long](0)
val inp = input.get(0)
buffer(0) = buff0.updated(inp, buff0.getOrElse(inp, 0L) + 1L)
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
val mp1 = buffer1.getMap[Any, Long](0)
val mp2 = buffer2.getMap[Any, Long](0)
buffer1(0) = mp1 ++ mp2.map { case (k, v) => k -> (v + mp1.getOrElse(k, 0L)) }
}
override def evaluate(buffer: Row): Any = {
lazy val st = buffer.getMap[Any, Long](0).toStream
val mode = st.foldLeft(st.head){case (e, s) => if (s._2 > e._2) s else e}
mode._1
}
}
Afterwords you could use it with your dataframe in the following manner.
val modeColumnList = List("some", "column", "names") // or df.columns.toList
val modeAgg = new ModeUDAF()
val aggCols = modeColumnList.map(c => modeAgg(df(c)))
val aggregatedModeDF = df.agg(aggCols.head, aggCols.tail: _*)
aggregatedModeDF.show()
Also you could use .collect on the final dataframe to collect the result in a scala data structure.
Note: The performance of this solution depends on the cardinality of the input column.

How to avoid to broadcast a large lookup table in Spark

Can you help me to avoid broadcasting of a large lookup table? I have a table with measurements:
Measurement Value
x1 5.1
x2 8.9
x1 9.1
x3 4.4
x2 2.1
...
And a list of pairs:
P1 P2
x1 x2
x2 x3
...
The task is to get all values for both elements of every pair and put them into a magic function. That's how I solved it by broadcasting the large table with the measurements.
case class Measurement(measurement: String, value: Double)
case class Candidate(c1: String, c2: String)
val measurements = Seq(Measurement("x1", 5.1), Measurement("x2", 8.9),
Measurement("x1", 9.1), Measurement("x3", 4.4))
val candidates = Seq(Candidate("x1", "x2"), Candidate("x2", "x3"))
// create data frames
val dfm = sqc.createDataFrame(measurements)
val dfc = sqc.createDataFrame(candidates)
// broadcast lookup table
val lookup = sc.broadcast(dfm.rdd.map(r => (r(0), r(1))).collect())
// udf: run magic test with every candidate
val magic: ((String, String) => Double) = (c1: String, c2: String) => {
val lt = lookup.value
val c1v = lt.filter(_._1 == c1).map(_._2).map(_.asInstanceOf[Double])
val c2v = lt.filter(_._1 == c2).map(_._2).map(_.asInstanceOf[Double])
new Foo().magic(c1v, c2v)
}
val sq1 = udf(magic)
val dfks = dfc.withColumn("magic", sq1(col("c1"), col("c2")))
As you can guess I'm not pretty happy with the solution. For every pair I filter the lookup table twice, this isn't fast nor elegant. I'm using Spark 1.6.1.
An alternative would be to use RDD and join. Not sure what's better in term of performance though.
case class Measurement(measurement: String, value: Double)
case class Candidate(c1: String, c2: String)
val measurements = Seq(Measurement("x1", 5.1), Measurement("x2", 8.9),
Measurement("x1", 9.1), Measurement("x3", 4.4))
val candidates = Seq(Candidate("x1", "x2"), Candidate("x2", "x3"))
val rdm = sc.parallelize(measurements).map(r => (r.measurement, r.value)).groupByKey().cache()
val rdc = sc.parallelize(candidates).map(r => (r.c1, r.c2)).cache()
val firstColJoin = rdc.join(rdm).values
val secondColJoin = firstColJoin.join(rdm).values
secondColJoin.map { case (c1v, c2v) => new Foo().magic(c1v, c2v) }
Thank you for all comments. I read the comments, did some research and studied zero323 posts.
My current solution is using two joins and an UserDefinedAggregateFunction:
object GroupValues extends UserDefinedAggregateFunction {
def inputSchema = new StructType().add("x", DoubleType)
def bufferSchema = new StructType().add("buff", ArrayType(DoubleType))
def dataType = ArrayType(DoubleType)
def deterministic = true
def initialize(buffer: MutableAggregationBuffer) = {
buffer.update(0, ArrayBuffer.empty[Double])
}
def update(buffer: MutableAggregationBuffer, input: Row) = {
if (!input.isNullAt(0))
buffer.update(0, buffer.getSeq[Double](0) :+ input.getDouble(0))
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
buffer1.update(0, buffer1.getSeq[Double](0) ++ buffer2.getSeq[Double](0))
}
def evaluate(buffer: Row) = buffer.getSeq[Double](0)
}
// join data for candidate one
val j1 = dfc.join(dfm, dfc("c1") === dfm("measurement"))
// aggregate all c1 values to an array
val j1v = j1.groupBy(col("c1"), col("c2")).agg(GroupValues(col("value"))
.alias("c1-values"))
// join data for candidate two
val j2 = j1v.join(dfm, j1v("c2") === dfm("measurement"))
// aggregate all c2 values to an array
val j2v = j2.groupBy(col("c1"), col("c2"), col("c1-values"))
.agg(GroupValues(col("value")).alias("c2-values"))
Next step would be to use collect_list instead of UserDefinedAggregateFunction.