Truncating the data-frame column values in Scala - scala

df is the dataframe, and
df.select($"createdon").show
output is:
| createdon|
+--------------------+
|2017-05-11 15:29:...|
|2017-05-11 15:29:...|
|2017-05-11 11:02:...|
|2017-05-11 11:02:...|
|2017-05-11 15:29:...|
I need the createdon value to be just the date instead of whole timestamp. How to have the new dataframe containing createdon's value to be just the date instead of whole timestamp?

to_date function should do it:
df.withColumn("createdon", to_date($"createdon")).show
+----------+
| createdon|
+----------+
|2017-05-11|
+----------+

You can use a map transformation (assuming, that selected values are of the String type)
df.select($"createdon").map(_.getAs[String]("createdon").substring(0, 11)).show()

Related

Change data type column from string to date with custom format

I have a DF with a string column called "data" in the format 02/09/2019 (dd/MM/yyyy). I want to change the data type of the column from STRING to DATE, maintaining the same format. I'm using Spark 2.1.0.
I've tried the statement:
df.select(to_date( unix_timestamp($"data", "dd/MM/yyyy").cast("timestamp")))
It converts the column from STRING to DATE but in yyyy-MM-dd format:
+----------+
| data|
+----------+
|2003-07-22|
|2003-08-01|
+----------+
Using date_format function, I obtain the right format but wrong data type (again STRING):
df.select(date_format(to_date( unix_timestamp($"data", "dd/MM/yyyy").cast("timestamp")), "dd/MM/yyyy") as "data").printSchema()
Thanks a lot.
Date datatype expects the format as yyyy-MM-dd.
If we have format as dd/MM/yyyy and we cannot cast as date datatype (casting will result null value).
Example:
df.show() //sample data
+----------+
| data|
+----------+
|22/07/2003|
|01/08/2003|
+----------+
df.selectExpr("date(data)").show() //casting to date type
+----+
|data|
+----+
|null|
|null|
+----+
How to cast to Datetype?
df.select(to_date(unix_timestamp($"data","dd/MM/yyyy").cast("timestamp")).alias("da")).show()
(or)
df.select(from_unixtime(unix_timestamp($"data","dd/MM/yyyy"),"yyyy-MM-dd").cast("date").alias("da")).show()
+----------+
| da|
+----------+
|2003-07-22|
|2003-08-01|
+----------+
printSchema:
df.select(from_unixtime(unix_timestamp($"data","dd/MM/yyyy"),"yyyy-MM-dd").cast("date").alias("dd")).printSchema
root
|-- dd: date (nullable = true)

Converting string time to day timestamp

I have just started working for Pyspark, and need some help converting a column datatype.
My dataframe has a string column, which stores the time of day in AM/PM, and I need to convert this into datetime for further processing/analysis.
fd = spark.createDataFrame([(['0143A'])], ['dt'])
fd.show()
+-----+
| dt|
+-----+
|0143A|
+-----+
from pyspark.sql.functions import date_format, to_timestamp
#fd.select(date_format('dt','hhmma')).show()
fd.select(to_timestamp('dt','hhmmaa')).show()
+----------------------------+
|to_timestamp(`dt`, 'hhmmaa')|
+----------------------------+
| null|
+----------------------------+
Expected output: 01:43
How can I get the proper datetime format in the above scenario?
Thanks for your help!
If we look at the doc for to_timestamp (http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.functions.to_timestamp) we see that the format must be specified as a SimpleDateFormat (https://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html).
In order to retrieve the time of the day in AM/PM, we must use hhmma. But in SimpleDateFormat, a catches AM or PM, and not A or P. So we need to change our string :
import pyspark.sql.functions as F
df = spark.createDataFrame([(['0143A'])], ['dt'])
df2 = df.withColumn('dt', F.concat(F.col('dt'), F.lit('M')))
df3 = df2.withColumn('ts', F.to_timestamp('dt','hhmma'))
df3.show()
+------+-------------------+
| dt| ts|
+------+-------------------+
|0143AM|1970-01-01 01:43:00|
+------+-------------------+
If you want to retrieve it as a string in the format you mentionned, you can use date_format :
df4 = df3.withColumn('time', F.date_format(F.col('ts'), format='HH:mm'))
df4.show()
+------+-------------------+-----+
| dt| ts| time|
+------+-------------------+-----+
|0143AM|1970-01-01 01:43:00|01:43|
+------+-------------------+-----+

PySpark: String to timestamp transformation

I am working with time data and try to convert the string to timestamp format.
Here is what the 'Time' column looks like
+----------+
| Time |
+----------+
|1358380800|
|1380672000|
+----------+
Here is what I want
+---------------+
| Time |
+---------------+
|2013/1/17 8:0:0|
|2013/10/2 8:0:0|
+---------------+
I find some similar questions and answers and have tried these code, but all end with 'null'
df2 = df.withColumn("Time", test["Time"].cast(TimestampType()))
df2 = df.withColumn('Time', F.unix_timestamp('Time', 'yyyy-MM-dd').cast(TimestampType()))
Well your are doing it the other way around. The sql function unix_timestamp converts a string with the given format to a unix timestamp. When you want to convert a unix timestamp to the datetime format, you have to use the from_unixtime sql function:
from pyspark.sql import functions as F
from pyspark.sql import types as T
l1 = [('1358380800',),('1380672000',)]
df = spark.createDataFrame(l1,['Time'])
df.withColumn('Time', F.from_unixtime(df.Time).cast(T.TimestampType())).show()
Output:
+-------------------+
| Time|
+-------------------+
|2013-01-17 01:00:00|
|2013-10-02 02:00:00|
+-------------------+

Convert from timestamp to specific date in pyspark

I would like to convert on a specific column the timestamp in a specific date.
Here is my input :
+----------+
| timestamp|
+----------+
|1532383202|
+----------+
What I would expect :
+------------------+
| date |
+------------------+
|24/7/2018 1:00:00 |
+------------------+
If possible, I would like to put minutes and seconds to 0 even if it's not 0.
For example, if I have this :
+------------------+
| date |
+------------------+
|24/7/2018 1:06:32 |
+------------------+
I would like this :
+------------------+
| date |
+------------------+
|24/7/2018 1:00:00 |
+------------------+
What I tried is :
from pyspark.sql.functions import unix_timestamp
table = table.withColumn(
'timestamp',
unix_timestamp(date_format('timestamp', 'yyyy-MM-dd HH:MM:SS'))
)
But I have NULL.
Update
Inspired by #Tony Pellerin's answer, I realize you can go directly to the :00:00 without having to use regexp_replace():
table = table.withColumn("date", f.from_unixtime("timestamp", "dd/MM/yyyy HH:00:00"))
table.show()
#+----------+-------------------+
#| timestamp| date|
#+----------+-------------------+
#|1532383202|23/07/2018 18:00:00|
#+----------+-------------------+
Your code doesn't work because pyspark.sql.functions.unix_timestamp() will:
Convert time string with given pattern (‘yyyy-MM-dd HH:mm:ss’, by default) to Unix time stamp (in seconds), using the default timezone and the default locale, return null if fail.
You actually want to do the inverse of this operation, which is convert from an integer timestamp to a string. For this you can use pyspark.sql.functions.from_unixtime():
import pyspark.sql.functions as f
table = table.withColumn("date", f.from_unixtime("timestamp", "dd/MM/yyyy HH:MM:SS"))
table.show()
#+----------+-------------------+
#| timestamp| date|
#+----------+-------------------+
#|1532383202|23/07/2018 18:07:00|
#+----------+-------------------+
Now the date column is a string:
table.printSchema()
#root
# |-- timestamp: long (nullable = true)
# |-- date: string (nullable = true)
So you can use pyspark.sql.functions.regexp_replace() to make the minutes and seconds zero:
table.withColumn("date", f.regexp_replace("date", ":\d{2}:\d{2}", ":00:00")).show()
#+----------+-------------------+
#| timestamp| date|
#+----------+-------------------+
#|1532383202|23/07/2018 18:00:00|
#+----------+-------------------+
The regex pattern ":\d{2}" means match a literal : followed by exactly 2 digits.
Maybe you could use the datetime library to convert timestamps to your wanted format. You should also use user-defined functions to work with spark DF columns. Here's what I would do:
# Import the libraries
from pyspark.sql.functions import udf
from datetime import datetime
# Create a function that returns the desired string from a timestamp
def format_timestamp(ts):
return datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:00:00')
# Create the UDF
format_timestamp_udf = udf(lambda x: format_timestamp(x))
# Finally, apply the function to each element of the 'timestamp' column
table = table.withColumn('timestamp', format_timestamp_udf(table['timestamp']))
Hope this helps.

convert date to integer scala spark

I have a dataframe, that contain, 2 columns of date start_date and finish_date; and I created a new column to add the moyen between the 2 dates.
+-----+--------+-------+---------+-----+--------------------+-------------------
start_date| finish_date| moyen_date|
+-----+--------+-------+---------+-----+--------------------+-------------------
2010-11-03 15:56:... |2010-11-03 17:43:...| 0|
2010-11-03 17:43:... |2010-11-05 13:21:...| 2|
2010-11-05 13:21:... |2010-11-05 14:08:...| 0|
2010-11-05 14:08:... |2010-11-05 14:08:...| 0|
+-----+--------+-------+---------+-----+--------------------+-------------------
I calculated the difference between the 2 dates:
var result = sqlDF.withColumn("moyen_date",datediff(col("finish_date"), col("start_date")))
But I want to convert start_date and finish_date to integer, knowing that each column contain date + time.
Someone can help me please. ?
Thank you
Considering this as part of your dataframe:
df.show(false)
+---------------------+
|ts |
+---------------------+
|2010-11-03 15:56:34.0|
+---------------------+
unix_timestamp returns the number of milliseconds since epoch. The input column should be of type timestamp. The output column is of type long.
df.withColumn("unix_ts" , unix_timestamp($"ts").show(false)
+---------------------+----------+
|ts |unix_ts |
+---------------------+----------+
|2010-11-03 15:56:34.0|1288817794|
+---------------------+----------+
To convert it back to timestamp format of your choice, you can use from_unixtime which also takes an optional timestamp format as a parameter. You are using to_date, that's why you're only getting the date and not the time.
df.withColumn("unix_ts" , unix_timestamp($"ts") )
.withColumn("from_utime" , from_unixtime($"unix_ts" , "yyyy-MM-dd HH:mm:ss.S"))
.show(false)
+---------------------+----------+---------------------+
|ts |unix_ts |from_utime |
+---------------------+----------+---------------------+
|2010-11-03 15:56:34.0|1288817794|2010-11-03 15:56:34.0|
+---------------------+----------+---------------------+
The column from_utime here will be of type string though. To convert it to timestamp, you can simple use:
df.withColumn("from_utime" , $"from_utime".cast("timestamp") )
Since it's already in ISO date format, no specific conversion is needed. For any other format, you will need to use a combination of unix_timestamp and from_unixtime.