How to return original color to a binarized image? - matlab

I have a RGB image that I have processed and binarized and now I would like to return the original color only for the regions that now are white on the binarized image.
Is it possible to do so?
I've tried doing the following code, first I convert the data type from logical to double and then I try to return the original color, but it seems that doesn't works. The resulting image is a completely white image.
rz = double(rz);
rz(:,:,3)=I2(:,:,3);
rz(:,:,2)=I2(:,:,2);
rz(:,:,1)=I2(:,:,1);
rz is the binarized image while I2 is the original RGB image.
Is it possible to return the original color only for the regions that are white on the binarized image? What I'm doing wrong?

Assuming rz is logical NxMx1 image (i.e. you did not binarize differently in each dimensions)
Iout=I2;
Iout=bsxfun(#times,Iout,uint8(rz))
does the job. Basically you convert rz to double, and then multiply it with each color channel of Iout (using bsxfun). The resulting image will have the color [0,0,0] if the mask is zero in that pixel.

Related

How to apply binary mask to remove background from skin lesion colour image

the figure outputted just displays the binary mask image, however I am trying to get just the foreground of the coloured image, with the background being black.
original = imread('originalImage.jpg');
binaryImage = imread('binaryImage.png');
mask = cat(3,binaryImage, binaryImage, binaryImage);
output = mask.*original;
figure,imshow(output);
the binary mask
The original image
The most likely issue is that binary is an image with values of 0 for background and 255 for foreground. Multiplying a color image with values in the range [0,255] by such a mask leads to overflow. Since the input images are uint8, overflow leads to values of 255. Thus, everywhere where the mask is white, you get white colors.
The solution is to convert the images to double:
output = double(mask)/255 .* double(original)/255;
or to truly binarize the mask image:
output = (mask>0) .* original;

Extract foreground from background in matlab

I have 2 images. One is background image and other image has same background but with some foreground object. I want to extract foreground object from background. Simple subtraction operation in matlab will not suffice as it subtracts RGB value of background image from that of foreground image (as in below code).
im1 = imread('output/frame-1.jpg')
im2 = imread('output/frame-7.jpg')
%# subtract
deltaImage = im1 - im2;
imshow(deltaImage)
So if background color is white and foreground object is blue, then output (i.e. deltaImage) comes foreground object with orange color with black background. However the output I want is foreground object with blue color (i.e. original color) with black background. How can I get this ? I tried to do it using below code, but output image is incorrect.
im1 = imread('foreground.jpg')
im2 = imread('background.jpg')
[m n k]=size(im2);
deltaImage = zeros(m,n,3);
fprintf('%d %d %d.\n',m,n,k);
for l=1:k
for i=1:m-1
for j=1:n-1
if im1(i:j:l)~=im2(i:j:l)
deltaImage(i,j,l) = im1(i,j,l);
end
end
end
end
imshow(deltaImage)
Background IMAGE
Foreground Image
Output Image (Here I want color of man to be blue)
You can use deltaImage to create a mask (zeros and ones image) that multiplies the foreground. However, note that you will have artifacts associated with lossy image compression (.jpeg). These can be reduced, to some extent, if you use a threshold, like the average difference or a specific value you want. Try this:
im1 = double(imread('~/Downloads/foreground.jpg'));
im2 = double(imread('~/Downloads/background.jpg'));
compute the difference of the averages of the 3 channels
deltaImage = mean(im2,3) - mean(im1,3);
then use the product of the mean by a standard deviation (~3), or uncomment the line below to use a specific threshold, like 128
mask = deltaImage>3*mean(deltaImage(:));
% mask = deltaImage>128;
then assuming all original images are in 8-bit format produce a result also in 8-bit format:
result = uint8(cat(3, im1(:,:,1).*mask, im1(:,:,2).*mask, im1(:,:,3).*mask));
imshow(result)
And this is the result you should get:
Again the weird looking pixels around the main object are artifacts of lossy image compression (.jpeg), you should try working with lossless like .png formats.

How do I convert the whole image to grayscale except for a sub image which should be in color?

I have an image and a subimage which is cropped out of the original image.
Here's the code I have written so far:
val1 = imread(img);
val2 = imread(img_w);
gray1 = rgb2gray(val1);%grayscaling both images
gray2 = rgb2gray(val2);
matchingval = normxcorr2(gray1,gray2);%normalized cross correlation
[max_c,imax]=max(abs(matchingval(:)));
After this I am stuck. I have no idea how to change the whole image grayscale except for the sub image which should be in color.
How do I do this?
Thank you.
If you know what the coordinates are for your image, you can always just use the rgb2gray on just the section of interest.
For instance, I tried this on an image just now:
im(500:1045,500:1200,1)=rgb2gray(im(500:1045,500:1200,1:3));
im(500:1045,500:1200,2)=rgb2gray(im(500:1045,500:1200,1:3));
im(500:1045,500:1200,3)=rgb2gray(im(500:1045,500:1200,1:3));
Where I took the rows (500 to 1045), columns (500 to 1200), and the rgb depth (1 to 3) of the image and applied the rgb2gray function to just that. I did it three times as the output of rgb2gray is a 2d matrix and a color image is a 3d matrix, so I needed to change it layer by layer.
This worked for me, making only part of the image gray but leaving the rest in color.
The issue you might have though is this, a color image is 3 dimensions while a gray scale need only be 2 dimensions. Combining them means that the gray scale must be in a 3d matrix.
Depending on what you want to do, this technique may or may not help.
Judging from your code, you are reading the image and the subimage in MATLAB. What you need to know are the coordinates of where you extracted the subimage. Once you do that, simply take your original colour image, convert that to grayscale, then duplicate this image in the third dimension three times. You need to do this so that you can place colour pixels in this image.
For RGB images, grayscale images have the RGB components to all be the same. Duplicating this image in the third dimension three times creates the RGB version of the grayscale image. Once you do that, simply use the row and column coordinates of where you extracted the subimage and place that into the equivalent RGB grayscale image.
As such, given your colour image that is stored in img and your subimage stored in imgsub, and specifying the rows and columns of where you extracted the subimage in row1,col1 and row2,col2 - with row1,col1 being the top left corner of the subimage and row2,col2 is the bottom right corner, do this:
img_gray = rgb2gray(img);
img_gray = cat(3, img_gray, img_gray, img_gray);
img_gray(row1:row2, col1:col2,:) = imgsub;
To demonstrate this, let's try this with an image in MATLAB. We'll use the onion.png image that's part of the image processing toolbox in MATLAB. Therefore:
img = imread('onion.png');
Let's also define our row1,col1,row2,col2:
row1 = 50;
row2 = 90;
col1 = 80;
col2 = 150;
Let's get the subimage:
imgsub = img(row1:row2,col1:col2,:);
Running the above code, this is the image we get:
I took the same example as rayryeng's answer and tried to solve by HSV conversion.
The basic idea is to set the second layer i.e saturation layer to 0 (so that they are grayscale). then rewrite the layer with the original saturation layer only for the sub image area, so that, they alone have the saturation values.
Code:
img = imread('onion.png');
img = rgb2hsv(img);
sPlane = zeros(size(img(:,:,1)));
sPlane(50:90,80:150) = img(50:90,80:150,2);
img(:,:,2) = sPlane;
img = hsv2rgb(img);
imshow(img);
Output: (Same as rayryeng's output)
Related Answer with more details here

Finding dark purple pixels in an image

I am doing a research for my higher studies in automation. I have done the automation part of the microscope but I need help in MATLAB. An example of what I would like to segment is shown here:
I need to extract the dark purple pixels from this image and only display that in a figure. It is almost like colour based segmentation but I just want to only take the dark purple pixel from the whole image.
What would I do in this case?
Here's something to get you started. Let's go with the theme of colour segmentation where you only want to extract pixels that are of a deep purple. I would like to point you to the HSV colour space before we get started. The HSV colour space is ideal for representing colours in a way that is most intuitive to humans. We tend to describe colours by their dominant colour, followed by attributes such as how washed out or how pure the colour is, and how bright or dark the colour is. The dominant colour is represented by the Hue, the appearance of how washed out or how pure the colour is is represented by the Saturation and the intensity of the colour is represented by the Value, and hence Hue-Saturation-Value, or the HSV colour space.
We can transform a RGB image so that it becomes HSV by rgb2hsv. This will return a 3D matrix that has the hue, saturation and value as 2D slices in a 3D matrix, much like a RGB image where each slices represents the red, green and blue channels. Let's see what each component looks like once we transform the image into HSV:
im = imread('https://www.cdc.gov/dpdx/images/malaria/ovale/Po_gametocyte_thickB.jpg');
hsv = rgb2hsv(im2double(im));
figure;
for idx = 1 : 3
subplot(1,3,idx);
imshow(hsv(:,:,idx));
end
The first line of code reads in an image from a URL. I'm going to use the one that Hoki referred you to, as it's the most simplest one to deal with. For self-containment, this is what the original image looks like:
Once we do this, we convert the image into the HSV colour space. It is important that you convert the image to double precision and you normalize each component to [0,1], and that is performed by im2double. Next, we spawn a new figure, and place each component in a single row over three columns. The first column represents the hue, next column the saturation and finally the last column being the value. This is the figure that we see:
With the first figure, it looks like the dominant colour is purple, whether it's a light shade or a dark shade of the colour, so the hue won't help us here. If you look at a HSV colour wheel:
(source: hobbitsandhobos.com)
Normalize the wheel so that it falls between [0,1] instead of 0 to 360 degrees. The hue is actually represented as degrees due to the nature of the colour space, but MATLAB normalizes this to [0,1]. You can see that purple falls within a hue of [0.6,0.8], which corresponds to the first figure I showed you that displays the hue for our image. If you examine the pixels around the image, they fluctuate between this range. Therefore, the hue won't help us much here.
What will certainly help us are the saturation and value components. If you take a look, the deep purple pixels have a higher saturation than the rest of the background, which makes sense because the deep purple has a much more pure version of purple than the rest of the background. For the value, you can see that the brightness of the dark purple is darker than the background.
We can use these two points as an exploit to segment out the purple colour in the image. The easiest thing to do would be to threshold the saturation and value planes so that any values that are within a certain range you keep while those that are outside you throw away. Therefore, you can do something like this:
sThresh = hsv(:,:,2) > 0.6 & hsv(:,:,2) < 0.9;
vThresh = hsv(:,:,3) > 0.4 & hsv(:,:,3) < 0.65;
I used impixelinfo and I hovered my mouse over the saturation and value components to examine what the values were for the deep purple regions. It looks like those pixels that are deep purple have a saturation value between 0.6 and 0.9, while the value component has values between 0.4 and 0.65. The above code will create two binary masks where true means that the pixel satisfies our criteria while false means it doesn't. Because I want to combine both things together and not leave any stone unturned, let's logical OR the masks together for the final result:
figure;
result = sThresh | vThresh;
imshow(result);
We will also show the result too. This is what we get:
As you can see, this does a pretty good job, but we have remnants of the red arrow that we don't want in the final result. To do a bit of cleanup, we can use morphology - specifically an opening filter of a small window so that we don't affect the pixels that we want as much. We can use imopen to perform our opening operation for us. A morphological opening removes isolated pixels that appear around your image. You use what is called a structuring element that is used to look at local neighbourhoods of your image. For the basics, any pixel regions that are as small as the shape that is contained within the structuring element get removed. Because we want to preserve the shape of the other objects, we can try using a 5 x 5 disk structuring element to clean these pixels up:
figure;
se = strel('disk', 2, 0);
final = imopen(result, se);
imshow(final);
This is what we get:
Not bad! There are some holes that we need to patch up, so let's fill in those holes with imfill:
figure;
final_noholes = imfill(final, 'holes');
imshow(final_noholes);
This is what we get:
OK! So we have our mask. The last thing we need to do is present the image so that you only show the deep purple colours from the original image, and nothing else. That can easily be achieved with bsxfun:
figure;
out = bsxfun(#times, im, uint8(final_noholes));
imshow(out);
The above operation takes your mask, and multiplies every pixel in your image by this mask. One small thing I'd like to point out is that the mask we found in the previous step needs to be cast to uint8, because bsxfun requires that the multiplication (or whatever operation you perform) need to be the same type. We replicate this mask in 3D so that you mask out the unwanted RGB pixels and only keep the ones you are looking for.
This is what we finally get:
As you can see, it isn't perfect, but it's certainly enough to get you started. Those thresholds are what are important, but with some very simple thresholding, I extracted most of the purple pixels out.
To make it easier for you, here's the code that I wrote above that can easily be copied and pasted into MATLAB for you to run:
clear all; close all; clc;
im = imread('https://www.cdc.gov/dpdx/images/malaria/ovale/Po_gametocyte_thickB.jpg');
hsv = rgb2hsv(im2double(im));
figure;
for idx = 1 : 3
subplot(1,3,idx);
imshow(hsv(:,:,idx));
end
sThresh = hsv(:,:,2) > 0.6 & hsv(:,:,2) < 0.9;
vThresh = hsv(:,:,3) > 0.4 & hsv(:,:,3) < 0.65;
figure;
result = sThresh | vThresh;
imshow(result);
figure;
se = strel('disk', 2, 0);
final = imopen(result, se);
imshow(final);
figure;
final_noholes = imfill(final, 'holes');
imshow(final_noholes);
figure;
out = bsxfun(#times, im, uint8(final_noholes));
imshow(out);
Good luck!
Try this:
function main
clc,clear
A = imread('https://www.cdc.gov/dpdx/images/malaria/ovale/Po_gametocyte_thickB.jpg');
subplot(1,2,1)
imshow(A)
RGB = [230 210 200]; % color you want
e = 40; % color shift
B = pix_in(A,RGB,e);
B = B + 255.*uint8(~B); % choosing white background
subplot(1,2,2)
imshow(B)
end
function B = pix_in(A,RGB,e)
% select specific pixels in image
% A - color image (3D matrix uint8)
% RGB - [R G B] - color to select
% e - color shift/deviation
A = double(A); % for same class operations (RGB - double)
[m, n, ~] = size(A);
RGB = reshape(RGB,1,1,3);
RGB = repmat(RGB,m,n,1); % creating 3D matrix
b = abs(A-RGB) < e; % logical 3D
b = sum(b,3) == 3; % if [R,G,B] of a pixel in range
B = A.*repmat(b,1,1,3); % selecting pixels those in range
B = uint8(B);
end

Matlab - remove image border using logical indexing

I have a retinal fundus image which has a white border along the corners. I am trying to remove the borders on all four sides of the image. This is a pre-processing step and my image looks like this:
fundus http://snag.gy/XLGkC.jpg
It is an RGB image, and I took the green channel, and created a mask using logical indexing. I searched for pixels which were all black in the image, and eroded the mask to remove the white edge pixels. However, I am not sure how to retrieve the final image, without the white pixel border using the mask that I have. This is my code, and any help would be appreciated:
maskIdx = rgb(:,:,2) == 0; # rgb is the original image
se = strel('disk',3); # erode 3-pixel using a disk structuring element
im2 = imerode(maskIdx, se);
newrgb = rgb(im2); # gives a vector - not the same size as original im
Solved it myself. This is what I did with some help.
I first computed the mask for all three color channels combined. This is because the mask for each channel is not the same when applied to all the three channels individually, and residual pixels will be left in the final image if I used only the mask from one of the channels in the original image:
mask = (rgb(:,:,1) == 0) & (rgb(:,:,2) == 0) & (rgb(:,:,3) == 0);
Next, I used a disk structuring element with a radius of 9 pixels to dilate my mask:
se = strel('disk', 9);
maskIdx = imdilate(mask,se);
EDIT: A structuring element which is arbitrary can also be used. I used: se = strel(ones(9,9))
Then, with the new mask, I multiplied the original image with the new dilated mask:
newImg(:,:,1) = rgb(:,:,1) .* uint8(maskIdx); # image was of double data-type
newImg(:,:,2) = rgb(:,:,2) .* uint8(maskIdx);
newImg(:,:,3) = rgb(:,:,3) .* uint8(maskIdx);
Finally, I subtracted the computed color-mask from the original image to get my desired border-removed image:
finalImg = rgb - newImg;
Result:
image http://snag.gy/g2X1v.jpg