This is a follow up to Spark streaming on dataproc throws FileNotFoundException
Over the past few weeks (not sure since exactly when), restart of a spark streaming job, even with the "kill dataproc.agent" trick is throwing this exception:
17/05/16 17:39:02 INFO org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at stream-event-processor-m/10.138.0.3:8032
17/05/16 17:39:03 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl: Submitted application application_1494955637459_0006
17/05/16 17:39:04 ERROR org.apache.spark.SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:149)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:497)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2258)
at org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:140)
at org.apache.spark.streaming.StreamingContext$$anonfun$getOrCreate$1.apply(StreamingContext.scala:826)
at org.apache.spark.streaming.StreamingContext$$anonfun$getOrCreate$1.apply(StreamingContext.scala:826)
at scala.Option.map(Option.scala:146)
at org.apache.spark.streaming.StreamingContext$.getOrCreate(StreamingContext.scala:826)
at com.thumbtack.common.model.SparkStream$class.main(SparkStream.scala:73)
at com.thumbtack.skyfall.StreamEventProcessor$.main(StreamEventProcessor.scala:19)
at com.thumbtack.skyfall.StreamEventProcessor.main(StreamEventProcessor.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/05/16 17:39:04 INFO org.spark_project.jetty.server.ServerConnector: Stopped ServerConnector#5555ffcf{HTTP/1.1}{0.0.0.0:4479}
17/05/16 17:39:04 WARN org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/05/16 17:39:04 ERROR org.apache.spark.util.Utils: Uncaught exception in thread main
java.lang.NullPointerException
at org.apache.spark.network.shuffle.ExternalShuffleClient.close(ExternalShuffleClient.java:152)
at org.apache.spark.storage.BlockManager.stop(BlockManager.scala:1360)
at org.apache.spark.SparkEnv.stop(SparkEnv.scala:87)
at org.apache.spark.SparkContext$$anonfun$stop$11.apply$mcV$sp(SparkContext.scala:1797)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1290)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1796)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:565)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2258)
at org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:140)
at org.apache.spark.streaming.StreamingContext$$anonfun$getOrCreate$1.apply(StreamingContext.scala:826)
at org.apache.spark.streaming.StreamingContext$$anonfun$getOrCreate$1.apply(StreamingContext.scala:826)
at scala.Option.map(Option.scala:146)
at org.apache.spark.streaming.StreamingContext$.getOrCreate(StreamingContext.scala:826)
at com.thumbtack.common.model.SparkStream$class.main(SparkStream.scala:73)
at com.thumbtack.skyfall.StreamEventProcessor$.main(StreamEventProcessor.scala:19)
at com.thumbtack.skyfall.StreamEventProcessor.main(StreamEventProcessor.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:149)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:497)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2258)
at org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:140)
at org.apache.spark.streaming.StreamingContext$$anonfun$getOrCreate$1.apply(StreamingContext.scala:826)
at org.apache.spark.streaming.StreamingContext$$anonfun$getOrCreate$1.apply(StreamingContext.scala:826)
at scala.Option.map(Option.scala:146)
at org.apache.spark.streaming.StreamingContext$.getOrCreate(StreamingContext.scala:826)
at com.thumbtack.common.model.SparkStream$class.main(SparkStream.scala:73)
at com.thumbtack.skyfall.StreamEventProcessor$.main(StreamEventProcessor.scala:19)
at com.thumbtack.skyfall.StreamEventProcessor.main(StreamEventProcessor.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Job output is complete
How to restart a spark streaming job from its checkpoint on a Dataproc cluster?
We've recently added auto-restart capabilities to dataproc jobs (available in gcloud beta track and in v1 API).
To take advantage of auto-restart, a job must be able to recover/cleanup so it will not work for most jobs without modification. However, it does work out of the box with Spark streaming with checkpoint files.
The restart-dataproc-agent trick should no longer be necessary. Auto-restart is resilient against Job crashes, Dataproc Agent failures, and VM restart-on-migration events.
Example:
gcloud beta dataproc jobs submit spark ... --max-failures-per-hour 1
See:
https://cloud.google.com/dataproc/docs/concepts/restartable-jobs
If you want to test out recovery, you can simulate VM migration by restarting the master VM [1]. After this you should be able to describe the job [2] and see ATTEMPT_FAILURE entry in statusHistory.
[1] gcloud compute instances reset <cluster-name>-m
[2] gcloud dataproc jobs describe
Related
I used spring-cloud-starter stream-kafka to connect to kafka, version 2.1.2. When I started the service in the k8s cluster, the first few could connect successfully. The following errors occurred in subsequent projects:
org.springframework.context.ApplicationContextException: Failed to start bean 'org.springframework.kafka.config.internalKafkaListenerEndpointRegistry'; nested exception is org.apache.kafka.common.errors.TimeoutException: Timeout expired while fetching topic metadata
at org.springframework.context.support.DefaultLifecycleProcessor.doStart(DefaultLifecycleProcessor.java:185)
at org.springframework.context.support.DefaultLifecycleProcessor.access$200(DefaultLifecycleProcessor.java:53)
at org.springframework.context.support.DefaultLifecycleProcessor$LifecycleGroup.start(DefaultLifecycleProcessor.java:360)
at org.springframework.context.support.DefaultLifecycleProcessor.startBeans(DefaultLifecycleProcessor.java:158)
at org.springframework.context.support.DefaultLifecycleProcessor.onRefresh(DefaultLifecycleProcessor.java:122)
at org.springframework.context.support.AbstractApplicationContext.finishRefresh(AbstractApplicationContext.java:893)
at org.springframework.boot.web.servlet.context.ServletWebServerApplicationContext.finishRefresh(ServletWebServerApplicationContext.java:163)
at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:552)
at org.springframework.boot.web.servlet.context.ServletWebServerApplicationContext.refresh(ServletWebServerApplicationContext.java:142)
at org.springframework.boot.SpringApplication.refresh(SpringApplication.java:775)
at org.springframework.boot.SpringApplication.refreshContext(SpringApplication.java:397)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:316)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:1260)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:1248)
at com.zynn.service.module.user.ZynnServiceModuleUserApplication.main(ZynnServiceModuleUserApplication.java:15)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.springframework.boot.loader.MainMethodRunner.run(MainMethodRunner.java:48)
at org.springframework.boot.loader.Launcher.launch(Launcher.java:87)
at org.springframework.boot.loader.Launcher.launch(Launcher.java:50)
at org.springframework.boot.loader.JarLauncher.main(JarLauncher.java:51)
I need some help. Any Suggestions are welcome. Thanks
I have found the reason for the error. I must configure item ”spring.kafka.bootstrap-servers” and item “spring.cloud.stream.kafka.binder.brokers”, otherwise I will create a connection pointing to localhost:9092,This connection is impossible to connect to, so after I configure it simultaneously, the project works
I am running a Spark job in yarn - cluster mode and it is failing with the following error.
could anyone please suggest the reason/ cause for this.
Exception in thread "main" org.apache.spark.SparkException: Application application_1512628475693_0641 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1261)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1307)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:751)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
The diagnostics from Ambari are as following
AM Container for appattempt_1512628475693_0641_000001 exited with exitCode: 15
Diagnostics: Exception from container-launch.
Container id: container_e9342_1512628475693_0641_01_000001
Exit code: 15
Stack trace: org.apache.hadoop.yarn.server.nodemanager.containermanager.runtime.ContainerExecutionException: Launch container failed
Any help would be greatly appreciated, please
I'm writing a Spark Streaming app in Scala. The goal of the app is to consume the latest records from Kafka and print them to stdout.
The app works perfectly when I run it locally using --master local[n]. However, when I run the app in YARN (and produce to the topic that I am consuming from), the app gets stuck at:
16/11/18 20:53:05 INFO JobScheduler: Added jobs for time 1479502385000 ms
After repeating the line above several times, Spark gives the following error:
16/11/18 20:54:47 WARN TaskSetManager: Lost task 0.0 in stage 9.0 (TID 9, r3d3.hadoop.REDACTED.REDACTED): java.net.ConnectException: Connection timed out
at sun.nio.ch.Net.connect0(Native Method)
at sun.nio.ch.Net.connect(Net.java:454)
at sun.nio.ch.Net.connect(Net.java:446)
at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:648)
at kafka.network.BlockingChannel.connect(BlockingChannel.scala:57)
at kafka.consumer.SimpleConsumer.connect(SimpleConsumer.scala:44)
at kafka.consumer.SimpleConsumer.getOrMakeConnection(SimpleConsumer.scala:142)
at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:69)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply$mcV$sp(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:107)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.fetchBatch(KafkaRDD.scala:150)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.getNext(KafkaRDD.scala:162)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at org.apache.spark.util.NextIterator.foreach(NextIterator.scala:21)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at org.apache.spark.util.NextIterator.to(NextIterator.scala:21)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at org.apache.spark.util.NextIterator.toBuffer(NextIterator.scala:21)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at org.apache.spark.util.NextIterator.toArray(NextIterator.scala:21)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:927)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:927)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Error from the streaming UI:
org.apache.spark.streaming.dstream.DStream.print(DStream.scala:757)
com.REDACTED.bdp.Main$.main(Main.scala:88)
com.REDACTED.bdp.Main.main(Main.scala)
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
java.lang.reflect.Method.invoke(Method.java:498)
org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Errors from YARN application logs (stdout):
java.lang.NullPointerException
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.close(KafkaRDD.scala:158)
at org.apache.spark.util.NextIterator.closeIfNeeded(NextIterator.scala:66)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator$$anonfun$1.apply(KafkaRDD.scala:101)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator$$anonfun$1.apply(KafkaRDD.scala:101)
at org.apache.spark.TaskContextImpl$$anon$1.onTaskCompletion(TaskContextImpl.scala:60)
at org.apache.spark.TaskContextImpl$$anonfun$markTaskCompleted$1.apply(TaskContextImpl.scala:79)
at org.apache.spark.TaskContextImpl$$anonfun$markTaskCompleted$1.apply(TaskContextImpl.scala:77)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.TaskContextImpl.markTaskCompleted(TaskContextImpl.scala:77)
at org.apache.spark.scheduler.Task.run(Task.scala:91)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
[2016-11-21 15:57:49,925] ERROR Exception in task 0.1 in stage 33.0 (TID 34) (org.apache.spark.executor.Executor)
org.apache.spark.util.TaskCompletionListenerException
at org.apache.spark.TaskContextImpl.markTaskCompleted(TaskContextImpl.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:91)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Another error from YARN application logs:
[2016-11-21 15:52:32,264] WARN Exception encountered while connecting to the server : (org.apache.hadoop.ipc.Client)
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyException): Operation category READ is not supported in state standby
at org.apache.hadoop.security.SaslRpcClient.saslConnect(SaslRpcClient.java:375)
at org.apache.hadoop.ipc.Client$Connection.setupSaslConnection(Client.java:558)
at org.apache.hadoop.ipc.Client$Connection.access$1800(Client.java:373)
at org.apache.hadoop.ipc.Client$Connection$2.run(Client.java:727)
at org.apache.hadoop.ipc.Client$Connection$2.run(Client.java:723)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:722)
at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:373)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1493)
at org.apache.hadoop.ipc.Client.call(Client.java:1397)
at org.apache.hadoop.ipc.Client.call(Client.java:1358)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy9.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:771)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:252)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:104)
at com.sun.proxy.$Proxy10.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:2116)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1315)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1311)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1311)
at org.apache.hadoop.fs.FileSystem.exists(FileSystem.java:1424)
at org.apache.spark.deploy.yarn.Client$.org$apache$spark$deploy$yarn$Client$$sparkJar(Client.scala:1195)
at org.apache.spark.deploy.yarn.Client$.populateClasspath(Client.scala:1333)
at org.apache.spark.deploy.yarn.ExecutorRunnable.prepareEnvironment(ExecutorRunnable.scala:290)
at org.apache.spark.deploy.yarn.ExecutorRunnable.env$lzycompute(ExecutorRunnable.scala:61)
at org.apache.spark.deploy.yarn.ExecutorRunnable.env(ExecutorRunnable.scala:61)
at org.apache.spark.deploy.yarn.ExecutorRunnable.startContainer(ExecutorRunnable.scala:80)
at org.apache.spark.deploy.yarn.ExecutorRunnable.run(ExecutorRunnable.scala:68)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
The weird part is that about 5% of the time, the app reads from Kafka successfully, for whatever reason.
The cluster and YARN seem to be working properly.
The cluster is secured using Kerberos.
What might be the source of this error?
tl;dr The answer does not offer an answer and merely suggests a possible next step.
My understanding of when the Lost task event could be reported for a streaming job is when the job was executed and it could not finish which in your case is the connection issue between a Spark executor and a Kafka broker.
16/11/18 20:54:47 WARN TaskSetManager: Lost task 0.0 in stage 9.0 (TID 9, r3d3.hadoop.REDACTED.REDACTED): java.net.ConnectException: Connection timed out
at sun.nio.ch.Net.connect0(Native Method)
at sun.nio.ch.Net.connect(Net.java:454)
at sun.nio.ch.Net.connect(Net.java:446)
at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:648)
at kafka.network.BlockingChannel.connect(BlockingChannel.scala:57)
at kafka.consumer.SimpleConsumer.connect(SimpleConsumer.scala:44)
at kafka.consumer.SimpleConsumer.getOrMakeConnection(SimpleConsumer.scala:142)
at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:69)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply$mcV$sp(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:107)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.fetchBatch(KafkaRDD.scala:150)
The pattern of the error message is as follows:
Lost task [id] in stage [taskSetId] (TID [tid], [host], executor [executorId]): [reason]
that translates to your case as having the Spark executor running on host r3d3.hadoop.REDACTED.REDACTED.
The reason for the failure is what follows which says:
java.net.ConnectException: Connection timed out
at sun.nio.ch.Net.connect0(Native Method)
at sun.nio.ch.Net.connect(Net.java:454)
at sun.nio.ch.Net.connect(Net.java:446)
at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:648)
at kafka.network.BlockingChannel.connect(BlockingChannel.scala:57)
at kafka.consumer.SimpleConsumer.connect(SimpleConsumer.scala:44)
at kafka.consumer.SimpleConsumer.getOrMakeConnection(SimpleConsumer.scala:142)
at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:69)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply$mcV$sp(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:107)
And I would ask myself when could a Kafka broker be unavailable for a client (which in your case is a Spark Streaming application which may or may not contribute to understand the root cause of the issue).
I think it might be unrelated to Apache Spark and would look for more answers in Kafka circles.
I am new to both scala and spark and I am using Intellij for running spark application.
It is an helloworld to spark using scala.
I got the code from GitHub
and I am getting these errors even after doing setup for spark using maven.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/11/02 22:31:22 INFO SparkContext: Running Spark version 1.6.0
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/commons/configuration/Configuration
at org.apache.hadoop.metrics2.lib.DefaultMetricsSystem.<init>(DefaultMetricsSystem.java:38)
at org.apache.hadoop.metrics2.lib.DefaultMetricsSystem.<clinit>(DefaultMetricsSystem.java:36)
at org.apache.hadoop.security.UserGroupInformation$UgiMetrics.create(UserGroupInformation.java:99)
at org.apache.hadoop.security.UserGroupInformation.<clinit>(UserGroupInformation.java:192)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2136)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2136)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2136)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:322)
at HelloWorld$.main(HelloWorld.scala:14)
at HelloWorld.main(HelloWorld.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)
Caused by: java.lang.ClassNotFoundException: org.apache.commons.configuration.Configuration
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 16 more
I know it is a very simple error, but I tried almost every web-link and still not able to get the solution.
I am trying to run simple word count job in spark but I am getting exception while running job.
For more detailed output, check application tracking page:http://quickstart.cloudera:8088/proxy/application_1446699275562_0006/Then, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_1446699275562_0006_02_000001
Exit code: 15
Stack trace: ExitCodeException exitCode=15:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:538)
at org.apache.hadoop.util.Shell.run(Shell.java:455)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 15
Failing this attempt. Failing the application.
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: root.cloudera
start time: 1446910483956
final status: FAILED
tracking URL: http://quickstart.cloudera:8088/cluster/app/application_1446699275562_0006
user: cloudera
Exception in thread "main" org.apache.spark.SparkException: Application finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:626)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:651)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
I checked log from following command
yarn logs -applicationId application_1446699275562_0006
Here is log
15/11/07 07:35:09 ERROR yarn.ApplicationMaster: User class threw exception: Output directory hdfs://quickstart.cloudera:8020/user/cloudera/WordCountOutput already exists
org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://quickstart.cloudera:8020/user/cloudera/WordCountOutput already exists
at org.apache.hadoop.mapred.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:132)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1053)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:954)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:863)
at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1290)
at org.com.td.sparkdemo.spark.WordCount$.main(WordCount.scala:23)
at org.com.td.sparkdemo.spark.WordCount.main(WordCount.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:480)
15/11/07 07:35:09 INFO yarn.ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: Output directory hdfs://quickstart.cloudera:8020/user/cloudera/WordCountOutput already exists)
15/11/07 07:35:14 ERROR yarn.ApplicationMaster: SparkContext did not initialize after waiting for 100000 ms. Please check earlier log output for errors. Failing the application.
Exception clearly indicates that WordCountOutput directory already exists but I made sure that directory is not there before running job.
Why I am getting this error even though directory was not there before running my job?
I came across same issue and fixed it by adding below highlighted part.
SparkConf sparkConf = new SparkConf().setAppName("Sentiment Scoring").set("spark.hadoop.validateOutputSpecs", "true");
Thanks,
Sathish.
For us this was caused by "running beyond physical memory limits". After increasing executer memory, the issue was fixed.
This Error mostly occurs while you submitting the wrong spark parameter in the spark-submit command. Please check the configuration parameters. In my case, I failed to submit masternamenode address where I need to read resources from HDFS.
Before : Where yarn threw Error- 15
dfs://masternamenode/TESTCGNATDATA/
After: Able to run the application
hdfs://masternamenode/TESTCGNATDATA/